An Optimal Control Method for Air Conditioning Load by Considering
Comfort and Electricity Expense of Consumers

SUN Yi¹, YE Han¹, LI Bin¹, HE Wei², YIN Lu³
(1. School of Electrical and Electronics Engineering, North China Electric Power University, Beijing 102206, China;
2. State Grid Jiangxi Electric Power Research Institute, Nanchang 330096, China;
3. Beijing Electric Power Economic Research Institute, Beijing 100055, China)

Abstract: In the modern electric power grid, the demand response applied to air conditioning load, which is the major load of the commercial and residential electricity system, is of great significance for the stable operation of power network. However, participating in demand response may lead to the reduction of consumers’ comfort. Thus an efficient optimal control method of air conditioning load is put forward, which allows the decision-making of electricity consumers, and a multi-objective optimization model is built based on the improved immune clonal selection algorithm, which optimizes comfort and electricity expense of air conditioning users. In this paper, the mutation operator of the traditional immune clonal selection algorithm is improved as an adaptive non-uniformity mutation operator, which further enhances the convergence of the algorithm and gets a more optimal Pareto-frontier. Results of simulation and tests indicate that multi-objective optimization can effectively balance the users’ demand for economy and comfort during the process of demand response based on Time-of-Use (TOU) price. Moreover, the antigen affinity can be optimized by improved algorithm, which verifies the effectiveness and advantage of the improved algorithm.

Keywords: demand response; multi-objective optimization; immune clonal selection algorithm; non-uniformity mutation; air conditioning load

0 引言

伴随着经济社会的高速发展，电网用电高峰时段的负荷不断攀升。近年来，为了实现电网负荷的“削峰填谷”，政府采取了有序用电、需求响应等多种措施对各区域用电负荷进行调控[1]。这些方法能够在一定程度上改变用户的用电行为和习惯，从而保证整个电网的稳定运行。其中，针对能耗约占全球总能耗40％的楼宇用户[2]，新建有大量的智能楼宇自动化控制系统，实现其用电设备的管理和调控。然而，随着生活水平的不断提升，人们对环境品质的要求也日益提升，建筑楼宇作为人们多数时间的工作与活动场所，其环境舒适度的调节也至关重要。而现有调控措施中，绝大部分以负荷削减效
果为主要目标，因此会导致用户的舒适度代价较高。

目前，绝大多数智能楼宇的综合管理功能借助建筑能源管理系统（building energy management system，BEMS）实现。该系统能够控制楼宇照明、空调、插座等多个系统的运行，并通过需求响应策略在电网负荷高峰时段降低楼宇总负荷。空调作为其中用能占比最大的用电负荷，其调控结果既对用户的用电成本有着直接影响，又与用户的舒适程度密切相关。因此，有必要为 BEMS 中的空调控制模块设计相应的调控策略，进行用电成本代价指标与舒适度代价指标的综合优化，以实现用户在经济性与舒适性之间的自主控制。

本文针对智能楼宇的需求响应控制功能，设计了用户可反馈空调用电成本与舒适度代价决策的双向互动方案。在此基础上，提出了基于改进免疫克隆选择算法的空调负荷多目标优化控制方法，并给出了多目标优化策略以及改进算法优化效果的验证。进而得到基于仿真结果的一组计及用户舒适度与用电成本的空调优化控制方案，从而实现空调负荷的人性化灵活调控。

1 电力用户可参与自主决策的空调运行控制方式

传统的空调控制模式基本为：用户设定某一期望的温度值后，空调根据外界环境温度变化调整自身功率，从而保持室内温度能在设定的温度值附近。而现有 BEMS 中的需求响应功能作用于空调后，也多为电网达标电价值与相应调控指令，用户在电网负荷高峰时按照策略规定，将期望室内温度提升为某特定值，同时反馈当前系统运行的状态信息。这种方案虽然在一定程度上实现了信息的双向交互，但用户在整个过程中仍处于较为被动的状态。因此，BEMS 需求响应功能的双向信息流中，应综合电价信号、环境参数（如室外温度等）、调控策略以及用户舒适度代价和用电成本代价的指标要求等多方面影响因素，来综合优化控制各项用电负荷的运行，如图 1 所示。

图 1 BEMS 需求响应功能模块信息交互示意图

将本文所设计的空调负荷优化调控方法应用到图 1 的系统当中，空调模块反馈给核心控制模块的信息流中就包含有用户根据个人偏好所选取的代价指标要求。基于空调的功能属性，用户在用电及参与需求响应的过程中，比较关注的两类代价指标即用电成本代价与舒适度代价。然而，不同用户个体在两类指标中的决策会存在差异。因此，可以根据运用智能算法优化出的结果，为用户设计较为直观的决策等级，如图 2 所示。

图 2 空调系统中基于用户舒适度代价与用电成本代价的指标决策等级

其中，舒适度最优与成本最优的情况都是只考虑单一代价指标的单目标优化结果，可以用于确定多目标优化的范围。C 和 E 分别代表多目标优化后，侧重保证舒适度最优和成本最优的对应方案；M 代表成本和舒适度代价均衡的对应方案；MC 和 ME 则分别代表多目标优化后，侧重保证舒适度最优与成本最优的对应方案。
较优和成本较优的对应方案。

本文着重研究单个用户空调负荷的多目标优化控制方法，暂不考虑楼宇中不同用户指标要求的协调控制以及其他可控负荷对空调的影响。

2 空调负荷多目标优化模型

在需求响应过程中，根据当前分时/实时电价情况调整对应时刻的空调功率，能够优化用户的用电成本代价[9]。根据约束对应时刻室内环境温度与最适温度值间的偏差，能够优化用户舒适度代价[10]。因此，给出空调负荷的多目标优化模型如下所示。

用电成本最优：
\[f_1 = \min \sum_i P_i Q_i \]

用户舒适度最优：
\[f_2 = \min \sum_i | T_{desired} - T_{r,in} | \]

约束条件：
\[0 < Q_i < Q_{max}, T_{min} < T_{r,in} < T_{max} \]

式中：\(t \) 为时间标记 (\(t = 0, 1, \ldots, 23 \)，间隔为 1h)；\(P_i \) 为时刻 \(t \) 对应的分时/实时电价 (元/kWh)；\(Q_i \) 为时间 \(t \) 内对应的空调用电量 (kWh)；\(T_{desired} \) 为室内最舒适温度 (°C)；\(T_{r,in} \) 为时刻 \(t \) 对应的室内温度 (°C)；\(Q_{max} \) 为时刻 \(t \) 内空调最大电能消耗量 (kWh)；\(T_{min} \) 和 \(T_{max} \) 分别为室内温度下限和上限 (°C)。

现阶段对空调负荷的调控主要是通过对调温器的调节实现的。24h 内室温设定方案不同，空调的负荷情况也就不尽相同。本文参考文献 [11] 研究给出的室外环境温度 (\(T_{out} \))、空调功率 (\(Q_c \)) 以及室内温度 (\(T_{r,in} \)) 的关系式和对应的参数设定，如式 (3) 所示：

\[T_{r,in} = \varepsilon^T T_{r,in} + (1 - \varepsilon^T) (T_{out} \pm \gamma Q_c/A) \]

其中，\(\varepsilon \) 为温度相关变量均以下标 \(T \) 为单位取值。

根据 1°F=32+1.8×1°C，给出变温间的约束关系式如式 (4) 所示：

\[T_{r,in} = \varepsilon^T T_{r,in} + (1 - \varepsilon^T) (T_{out} \pm 0.56 \gamma Q_c/A) \]

式中："+" 用于加热模式；"-" 用于制冷模式；\(T_{out} \) 为时刻 \(t \) 对应的室外环境温度 (°C)；\(\varepsilon \) 为系统惯量值；\(\gamma \) 为系统运行效率系数；A 为热传导系数。

3 基于改进免疫克隆选择算法的空调负荷优化控制策略

在利用智能算法解决函数优化问题的过程中，由于原始种群均是由随机生成，因此如何在大量数据中快速筛选出可行解和最优解成为问题的关键。免疫克隆选择算法通过克隆变异能够增殖出大量抗体，从而很好地保证了抗体的多样性。算法总是优先选择抗原亲和性好而且浓度小的个体进入下一代，能够保证可行解向最优的方向收敛，并利用记忆单元的作用能够提高局部搜索能力，加快进化速度[12]。针对文章中一部分提出的空调负荷优化模型，免疫克隆选择算法能够有效解决其对应的非线性多目标函数优化问题。将 24h 的室温映射为抗体，成本和舒适度目标函数映射为抗原，通过迭代选择出最接近该模型 Pareto 最优面 [13] 的一组方案。同时，为了提高算法的收敛能力，本文根据模型具体情况，对传统算法的变异算子进行改进，并应用于空调优化控制模型中。

3.1 抗原亲和度计算

在免疫算法中，抗原亲和度是克隆选择的一个重要依据，抗体群的编辑筛选过程也就是亲和度不断的过程。本文定义抗原亲和度为 \(\min (Z) \)，而 \(Z \) 的取值约束于公式 (5)、(6)。\[aw_1 \left(\sum_i (P_i Q_i) - f_i^* \right) \leq Z \]
[aw_2 \left(\sum_i | T_{desired} - T_{r,in} - f_i^* | \right) \leq Z \]

式中：\(Z \) 为亲和度目标函数的期望值，\(f_i^* \) 为目标函数 \(f_i \) 的期望值。\(\alpha_1 \) 为常数。设 \(f_{i,max} \) 为新抗体，\(f_{i,min} \) 为旧抗体的期望值；\(\alpha_2 \) 为权值 \(\alpha (l=1, 2) \) 的确定方法如下：

\[\alpha_2 \left(\frac{f_{i,max} - f_i^*}{\sum_i (f_{i,max} - f_{i,min})} \right) \]

式中：目标函数的最优 \(f_{i,max} \) 和 \(f_{i,min} \) 根据算例实际情况确定。

3.2 克隆操作

克隆操作也就是无性繁殖或复制的过程。设 \(x_i \) 是抗体种群中的第 \(i \) 个抗体，种群规模 \(n \) 取 100。克隆原则是为具备更优抗体亲和力 \(Z \) 以及更小抗体亲和力 \(\theta \) 的抗体提供更多的复制机会。第 \(i \) 个抗体的克隆定义如下：

\[N_i = \text{int} \left(m \left(\frac{Z_i}{\sum_{k=1}^{n} Z_k} \right)^{-1} \theta_i \right) \]

式中：\(m \) 为常数 (本文取 10)；\(\theta_i \) 为抗体亲和力，代表 \(x_i \) 与抗体群内其他抗体的亲和程度，具体定义为
\[\theta_i = \min(\exp(\| x_i - x_j \|)), i, j = 1, 2, \ldots, n \]

克隆操作后，新抗体种群规模为 \(\sum_{i=1}^{n} N_i \)。

3.3 改进的非一致性变异操作

本文将免疫克隆选择算法中多采用的 Gauss 变异等随机变异策略【15】，改进为一种非一致性变异算子。它将变异算子的结果与演化代数联系起来，使得演化初期变异范围较大，而随着演化推进，变异范围越来越小，从而增加抗体变异的可控性。同时，将步长与该组抗体的亲和度关联，增强变异的自适应性。此外，变异的判断条件也由原本的随机条件改进为与电价关联的形式，即电价较高时将原始抗体数值向上界方向调整，否则向下界方向调整，一定程度上提升了变异的效率。

该方法利用局部搜索的方式，相对传统的 Gauss 算子等增加了提高抗体与抗原亲和度的可能性，提高了收敛能力，使所得解向理想的 Pareto 最优面逼近【16】。针对克隆后的全部抗体群，具体变异过程如下：

① 选取电价的一个中间值 \(P^* \) 作为判断条件；
② 定义亲和度相关步长为
\[l_z = \left(\frac{Z(i) - Z_{\text{best}}}{Z_{\text{max}} - Z_{\text{best}}} \right) \]

如果 \(P \geq P^* \)，则令
\[T_{i,n}(i) = T_{i,n}(i) + l_z \times (T_{\text{max}} - T_{i,n}(i)) \times \left(1 - r^{(1 - \frac{g_{\text{max}}}{g_{\text{varmin}}})} \right) \]

否则，令
\[T_{i,n}(i) = T_{i,n}(i) - l_z \times (T_{i,n}(i) - T_{\text{min}}) \times \left(1 - r^{(1 - \frac{g_{\text{max}}}{g_{\text{varmin}}})} \right) \]

式中：\(g_{\text{varmin}} \)、\(g_{\text{max}} \) 分别为当前迭代次数和最大迭代次数；\(Z(i) \)、\(Z_{\text{best}} \)、\(Z_{\text{max}} \) 分别为当前抗体的抗原亲和度、当前种群的最优抗原亲和度及当前种群的最大抗原亲和度；\(r \) 为 \([0, 1] \) 中的随机数。

3.4 克隆选择

克隆选择过程主要依赖于抗体校验与抗体选择两个步骤。抗体校验主要用于对比变异前后抗体 \(x_{i, \text{old}} \) 和 \(x_{i, \text{new}} \) 所对应的 \(Z_{i, \text{old}} \) 和 \(Z_{i, \text{new}} \)。若 \(Z_{i, \text{new}} > Z_{i, \text{old}} \)，那么变异失败，仍保留变异前抗体 \(x_{i, \text{old}} \)，否则保留变异个体。而抗体选择是一个迭代筛选的过程。设 \(x_{i, \text{best}} \) 是当前变异后 \(N_i \) 个抗体中最优的一组，然后根据公式(12)～(14)求解每个 \(x_{i, \text{best}}(k + 1) \) 选择合适 \(x_i \) 的机率：

\[R(x_i(k + 1) = x_{i, \text{best}}(k)) = \begin{cases} 1, & A > B \\ \exp\left(-\frac{f(x_i(k) - B)}{D}\right), & A \leq B \end{cases} \]

式中：
\[A = f(x_i(k)), B = f(x_{i, \text{best}}(k)) \]

且
\[R(x_i(k + 1) = x_i(k)) = 1 - R(x_i(k + 1) = x_{i, \text{best}}(k)) \]

综上所述，迭代后的 \(x_i(k + 1) \) 取值为
\[x_i(k + 1) = R(x_i(k + 1) = x_i(k)) \times x_i(k) + R(x_i(k + 1) = x_{i, \text{best}}(k)) \times x_{i, \text{best}}(k) \]

3.5 算法具体步骤

基于上面的理论基础，本文针对空调负荷优化控制算法的改进免疫克隆选择算法具体步骤如图 3 所示。

图 3 空调负荷优化控制算法流程图

现代电力，2016,33(5) http://xddl.ncepu.edu.cn E-mail:xddl@vip.163.com
在实际应用过程中，电价政策 P 和室外温度预测值 T_{out} 均由核心模块下达到子系统模块当中作为已知量，且用户可根据个人偏好自行设定 T_{min}、T_{max} 以及 $T_{desired}$ 的取值，从而实现 BEMS 的双向互动功能。

4 仿真实验与结果分析

为了证明本文方法的合理性及有效性，本文与文献[14]中运用的基于 Gauss 变异的免疫克隆选择算法进行对比，仿真环境为 MATLAB 2014a。本文模型及算法的设计基于当前国内电价市场现状，P_i 和 T_{out} 分别采用北京市工商业分时电价以及夏季典型日气温曲线如图 4、图 5 所示，$T_{desired}$ 取 $27{\degree}C$[12]，T_{min} 和 T_{max} 分别取 $25{\degree}C$ 和 $29{\degree}C$，T_r、η、A 和 Q_{max} 依据文献[14]的参数设定值。

<table>
<thead>
<tr>
<th>调控方案</th>
<th>用电量/kWh</th>
<th>成本代价 f_1/元</th>
<th>舒适度代价 f_2/‘C</th>
</tr>
</thead>
<tbody>
<tr>
<td>方案(1)</td>
<td>14,040 0</td>
<td>15,262 0</td>
<td>48</td>
</tr>
<tr>
<td>方案(2)</td>
<td>20,880 8</td>
<td>22,028 2</td>
<td>0</td>
</tr>
</tbody>
</table>

基于以上数据，对算法中 $f_{1,\text{max}}, f_{1,\text{min}}$ 等参数进行设置。选取 f_1 取值为 $[19, 15]$ 的一组多目标优化结果与单目标优化结果对比，得到 3 种方案下的室温及空调能耗情况如图 6、图 7 所示。

4.1 多目标优化效果验证

在上文介绍的模型基础上，利用改进的免疫克隆算法对用户的成本代价和舒适度代价目标函数进行优化，得到基于分时电价并考虑用户舒适度的空调需求响应方案。首先，分别考虑两个目标函数的单目标最优情况，得到如表 1 的取值，同时作为用户可选调控方案的上下界。

图 4 北京市工商业分时电价

图 5 夏季典型日温度曲线

图 6 3 种方案下的室温设置对比图

图 7 3 种方案下的空调能耗对比图
由图 6、图 7 分析可得，成本最优方案将全天室温维持在温度上限值，根据公式（4）可以保证每个时刻的空调能耗最小，从而保证用电成本最低。然而每个时刻室温均相对最优温度偏移 2°C；舒适度最优方案将全天室温维持在最优温度，从而保证舒适度代价为 0。然而如 10:00-11:00，18:00-20:00 的电价高峰时刻，空调能耗较高，从而导致成本代价较高；而多目标优化方案相比于其他两种方案，全天室温在最优温度附近波动，且空调能耗在电价上升的时刻下调，电价下降的时刻上调，保证整体成本代价指标较低。将多目标优化后的代价指标 $f_1 = 19.8667$， $f_2 = 13.9117$ 与表 1 中的代价指标比较：相比成本最优的结果，牺牲了 68.05% 的成本代价；相比舒适度最优的结果，牺牲了 28.98% 的舒适度代价，但减少了 31.95% 的成本代价。因此，作为考虑两种因素的折衷优化方案，综合考虑两个代价指标，多目标优化结果还是起到了降低用户整体代价的作用。

4.2 优化算法改进效果对比

在选定不同目标函数期望值 f_i^* 的情况下，通过多目标优化算法的仿真实验能够分别得到相应情况下可行解。在同样的算例与参数设置下，针对同一抗体种群，分别采用改进（采用可变步长的自适应非一致性变异算子）与原始（Gauss 变异算子 [14]）的免疫克隆算法进行仿真优化，得到如图 8 所示的对比结果。

由图 8 可以明显看出，在 $f_1 \in [17, 21]$ 和 $f_2 \in [10, 40]$ 时，采用两种算法均可以优化出相应的取值结果。目标函数期望值 f_i^* 的取值方案可以视为该优化问题的 Pareto 最优面，而目标函数 f_1 和 f_2 均为越小越优。因此，改进算法的优化结果更逼近 Pareto 最优的情况。为了更直观地对比两组方案的优化效果，分别计算 5 组期望值取值方案 $[f_1^*, f_2^*]$ 下不同算法结果的抗原亲和力，结果如图 9 所示。

由图 9 可以明显看出，成本和舒适度目标函数分别取到不同期望值附近时，改进算法优化结果所对应的抗原亲和力均明显小于传统算法。可见，改进变异算子后，所得的可行解收敛能力更强，即更逼近多目标优化的 Pareto 最优面。

因此，将不同期望值设定下改进算法优化出的代价结果 $[f_1, f_2]$ 映射到文章第一部分设计的决策等级当中，如表 2 所示。

表 2 空调系统用户决策等级对应代价指标

<table>
<thead>
<tr>
<th>决策等级</th>
<th>成本代价 f_1/元</th>
<th>舒适度代价 f_2/℃</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>21,516.8</td>
<td>11,530.8</td>
</tr>
<tr>
<td>MC</td>
<td>20,311.4</td>
<td>12,658.2</td>
</tr>
<tr>
<td>M</td>
<td>19,562.1</td>
<td>17,118.6</td>
</tr>
<tr>
<td>ME</td>
<td>18,719.9</td>
<td>23,181.9</td>
</tr>
<tr>
<td>E</td>
<td>17,975.4</td>
<td>27,364.3</td>
</tr>
</tbody>
</table>

空调系统模块可以根据各代价结果所对应的室温设定方案对空调负荷进行优化控制。

5 结 论

本文首先针对智能用电需求响应信息交互过程中用户侧相对被动的问题，设计了一种用户可参与自主选择的空调负荷运行控制模式，并应用改进的免疫克隆选择算法，综合考虑用户舒适度和用电成本对空调负荷控制模型进行优化；此外，在免疫克
隆选择过程中，引入了可变步长的自适应非一致性变异，提升算法收敛速度并获取更接近期望值的优化结果。最后通过仿真实验验证了算法优化结果能够有效满足用户对舒适度和用电成本不同程度的需求；且在相同条件下，相比原始算法，本文算法能够得出亲和力更优、更贴近用户需求的结果。

参考文献

[1] 高聪，梁甜甜，李扬．自动需求响应的理论与实践综述．《电力建设》，2014，38(2)∶535 - 559．
[6] 张静，满足舒适要求的空调系统需求响应及优化运行策略研究．《重庆大学学报》，2011．
[7] 付蔚，程友增，罗志勇，等．基于分时电价的智能家电控制方案．《电网技术》，2015，39(3)∶717 - 723．
[8] 辛洁皓，吴亮．商务楼中央空调周期性暂停分档控制策略．《电力系统自动化》，2013，37(5)∶49 - 54．
[12] 黄友华．智能优化算法及其应用[M]．北京：国防工业出版社，2008，54 - 68．
[13] 罗志勇．多目标优化算法及其应用[M]．北京：国防工业出版社，2006，4 - 16．
[16] 尚荣华，焦李成，公茂君，等．免疫克隆算法求解动态多目标优化问题[J]．《软件学报》，2007(18)∶2700 - 2711．
[17] 张静，文充，曾礼强．夏季空调热舒适响应空间及节能潜力研究[J]．《四川建筑科学研究》，2012(38)∶304 - 308．

收稿日期：2015-09-18

作者简介：
孙毅(1972-),男,博士,副教授,研究方向为电力系统信息通信技术与电力系统安全稳定控制技术。
叶涵(1989-),女,硕士研究生,研究方向为电力系统信息通信技术与电力系统安全稳定控制技术。
李彬(1983-),男,博士,副教授,研究方向为电力系统信息通信技术与电力系统安全稳定控制技术。

现代电力.2016,33(5) http://xddl.ncepu.edu.cn E-mail:xddl@vip.163.com