WANG Zhijie, CHEN Wen, ZHU Xiaoxing, et al. Comprehensive Evaluation Method for Thermal Power Unit Flexibility Based on Data-driven and Its Application[J]. Modern Electric Power, 2024, 41(4): 667-672. DOI: 10.19725/j.cnki.1007-2322.2022.0281
Citation: WANG Zhijie, CHEN Wen, ZHU Xiaoxing, et al. Comprehensive Evaluation Method for Thermal Power Unit Flexibility Based on Data-driven and Its Application[J]. Modern Electric Power, 2024, 41(4): 667-672. DOI: 10.19725/j.cnki.1007-2322.2022.0281

Comprehensive Evaluation Method for Thermal Power Unit Flexibility Based on Data-driven and Its Application

Funds: Project Supported by the Science and Technology Project of State Grid Hunan Electric Power Co., Ltd (5216A521N00H )
More Information
  • Received Date: July 28, 2022
  • Accepted Date: June 05, 2023
  • Available Online: June 25, 2023
  • Sensing the flexible supply capacity of thermal power units actively is of great significance in promoting new energy consumption and enabling flexible dispatching of power grid. In this paper, a comprehensive evaluation method for thermal power unit flexibility based on data-drive was proposed. Firstly, flexibility, responsiveness, economy and environmental protection were selected as evaluation indexes , and the evaluation factors of each index were defined. Secondly, a significant volume of operating data were utilized to obtain the characterization values of each evaluation factor within the daily operation interval of the unit through fuzzy c -means clustering algorithm and polynomial fitting. Meanwhile, the quantization of each evaluation factor was achieved by a weighted integral mean method. Finally, the entropy weight method and subjective assignment method were combined to determine the weight of each evaluation index, thereby realizing comprehensive evaluation of thermal power unit flexibility. An instance was taken to verify the effectiveness of the proposed method.

  • [1]
    DING Ning, DUAN Jinhui, XUE Song, et al. Overall review of peaking power in China: status quo, barriers and solution[J]. Renewable and Sustainable Energy Reviews, 2015, 42: 503−516. doi: 10.1016/j.rser.2014.10.041
    [2]
    刘吉臻, 曾德良, 田亮, 等. 新能源电力消纳与燃煤电厂弹性运行控制策略[J]. 中国电机工程学报, 2015, 35(21): 5385−5394. doi: 10.13334/j.0258-8013.pcsee.2015.21.001

    LIU Jizhen, ZENG Deliang, TIAN Liang, et al. Control strategy for operating flexibility of coal-fired power plants in alternate electrical power systems[J]. Proceedings of the CSEE, 2015, 35(21): 5385−5394(in Chinese). doi: 10.13334/j.0258-8013.pcsee.2015.21.001
    [3]
    潘尔生, 田雪沁, 徐彤, 等. 火电灵活性改造的现状、关键问题与发展前景[J]. 电力建设, 2020, 41(9): 55−68. doi: 10.12204/j.issn.1000-7229.2020.09.007

    PAN Ersheng, TIAN Xueqin, XU Tong, et al. Status, critical problems and prospects of flexibility retrofit of thermal power in China[J]. Electric Power Construction, 2020, 41(9): 55−68(in Chinese). doi: 10.12204/j.issn.1000-7229.2020.09.007
    [4]
    郭通, 李永刚, 徐姗姗, 等. 考虑多主体博弈的火电机组灵活性改造规划[J]. 电工技术学报, 2020, 35(11): 2448−2459.

    GUO Tong, LI Yonggang, XU Shanshan, et al. Planning of flexibility retrofits of thermal power units considering multi-agent game[J]. Transactions of China Electrotechnical Society, 2020, 35(11): 2448−2459(in Chinese).
    [5]
    马龙飞, 吴耀武, 梁彦杰, 等. 计及火电机组灵活性改造的电源扩展弱鲁棒规划[J]. 电力系统自动化, 2020, 44(11): 102−110. doi: 10.7500/AEPS20191101006

    MA Longfei, WU Yaowu, LIANG Yanjie, et al. Light robust planning for generation expansion considering flexibility reformation of thermal power unit[J]. Automation of Electric Power Systems, 2020, 44(11): 102−110(in Chinese). doi: 10.7500/AEPS20191101006
    [6]
    武昭原, 周明, 王剑晓, 等. 激励火电提供灵活性的容量补偿机制设计[J]. 电力系统自动化, 2021, 45(6): 43−51. doi: 10.7500/AEPS20200626001

    WU Zhaoyuan, ZHOU Ming, WANG Jianxiao, et al. Mechanism design of capacity payment for incentivizing flexibility of thermal power[J]. Automation of Electric Power Systems, 2021, 45(6): 43−51(in Chinese). doi: 10.7500/AEPS20200626001
    [7]
    杨寅平, 曾沅, 秦超, 等. 面向深度调峰的火电机组灵活性改造规划模型[J]. 电力系统自动化, 2021, 45(17): 79−88. doi: 10.7500/AEPS20201225003

    YANG Yinping, ZENG Yuan, QIN Chao, et al. Planning model for flexibility reformation of thermal power units for deep peak regulation[J]. Automation of Electric Power Systems, 2021, 45(17): 79−88(in Chinese). doi: 10.7500/AEPS20201225003
    [8]
    徐姗姗, 郭通, 王月, 等. 大规模火电灵活性改造背景下电-热能源集成系统优化调度[J]. 电力建设, 2021, 42(5): 27−37. doi: 10.12204/j.issn.1000-7229.2021.05.004

    XU Shanshan, GUO Tong, WANG Yue, et al. Optimal scheduling of electro-thermal energy integrated system under the background of flexibility retrofit of thermal power unit[J]. Electric Power Construction, 2021, 42(5): 27−37(in Chinese). doi: 10.12204/j.issn.1000-7229.2021.05.004
    [9]
    YOSHIBA F, HANAI Y, WATANABE I, et al. Methodology to evaluate contribution of thermal power plant flexibility to power system stability when increasing share of renewable energies: Classification and additional fuel cost of flexible operation[J]. Fuel, 2021, 15: 120352.1−120352.10.
    [10]
    International Energy Agency. Harnessing variable renewables: A guide to the balancing challenge[R]. Paris: International Energy Agency, 2011.
    [11]
    International Energy Agency. Energy technology perspectives 2012: Pathways to a clean energy system[R]. Paris: International Energy Agency, 2012.
    [12]
    苏鹏, 王文君, 杨光, 等. 提升火电机组灵活性改造技术方案研究[J]. 中国电力, 2018, 51(5): 87−94.

    SU Peng, WANG Wenjun, YANG Guang, et al. Research on the technology to improve the flexibility of thermal power plants[J]. Electric Power, 2018, 51(5): 87−94(in Chinese).
    [13]
    李星梅, 钟志鸣, 阎洁. 大规模风电接入下的火电机组灵活性改造规划[J]. 电力系统自动化, 2019, 43(3): 51−57. doi: 10.7500/AEPS20180213007

    LI Xingmei, ZHONG Zhiming, YAN Jie. Flexibility reformation planning of thermal power units with large -scale integration of wind power[J]. Automation of Electric Power Systems, 2019, 43(3): 51−57(in Chinese). doi: 10.7500/AEPS20180213007
    [14]
    刘教民, 郭通, 徐姗姗, 等. 计及离散出力特征的火电机群固有运行灵活性评价方法[J]. 电力建设, 2019, 40(6): 65−73. doi: 10.3969/j.issn.1000-7229.2019.06.008

    LIU Jiaomin, GUO Tong, XU Shanshan, et al. An evaluation method of inherent operating flexibility of thermal power plant fleet considering discrete output characteristics[J]. Electric Power Construction, 2019, 40(6): 65−73(in Chinese). doi: 10.3969/j.issn.1000-7229.2019.06.008
    [15]
    孙栓柱, 代家元, 周春蕾, 等. 基于大数据的供热机组调峰能力研究与应用[J]. 中国电力, 2016, 49(7): 82−85. doi: 10.11930/j.issn.1004-9649.2016.07.082.04

    SUN Shuanzhu, DAI Jiayuan, ZHOU Chunlei, et al. Research and application of regulation capacity of heating units based on big data[J]. Electric Power, 2016, 49(7): 82−85(in Chinese). doi: 10.11930/j.issn.1004-9649.2016.07.082.04
    [16]
    林俐, 田欣雨. 基于火电机组分级深度调峰的电力系统经济调度及效益分析[J]. 电网技术, 2017, 41(7): 2255−2262.

    LIN Li, TIAN Xinyu. Analysis of deep peak regulation and its benefit of thermal units in power system with large scale wind power integrated[J]. Power System Technology, 2017, 41(7): 2255−2262(in Chinese).
    [17]
    李明扬, 蒋媛媛. 考虑煤耗率的火电机组灵活调峰对风电消纳的影响效果研究[J]. 热力发电, 2020, 49(2): 45−51.

    LI Mingyang, JIANG Yuanyuan. Effect of flexible load regulation of thermal power units considering coal consumption rate on wind power utilization[J]. Thermal Power Generation, 2020, 49(2): 45−51(in Chinese).
    [18]
    徐婧, 顾煜炯, 王仲, 等. 基于数据挖掘的煤电机组能效特征指标及其基准值的研究[J]. 中国电机工程学报, 2017, 37(7): 2009−2015.

    XU Jing, GU Yujiong, WANG Zhong, et al. Research on indexes of energy efficiency and its reference-value for coal-fired power units based on data-mining[J]. Proceedings of the CSEE, 2017, 37(7): 2009−2015(in Chinese).
    [19]
    张江丰, 孙坚栋, 苏烨, 等. 基于熵权-密切值法的机组一次调频性能综合评价方法[J]. 汽轮机技术, 2020, 62(4): 309−313. doi: 10.3969/j.issn.1001-5884.2020.04.018

    ZHANG Jiangfeng, SUN Jiandong, SU Ye, et al. Comprehensive evaluation method for unit primary frequency regulation performance based on entropy weight-osculating value method[J]. Turbine Technology, 2020, 62(4): 309−313(in Chinese). doi: 10.3969/j.issn.1001-5884.2020.04.018
    [20]
    李响, 牛赛. 双碳目标下源–网–荷多层评价体系研究[J]. 中国电机工程学报, 2021, 41(Z1): 178−184.

    LI Xiang, NIU Sai. Study on multi-layer evaluation system of source-grid-load under carbon-neutral goal[J]. Proceedings of the CSEE, 2021, 41(Z1): 178−184(in Chinese).
    [21]
    DELKHOSH H, SEIFI H. Technical valuation of generating units for participating in primary frequency control[J]. International Journal of Electrical Power & Energy Systems, 2020, 118: 105826.
    [22]
    阎威武, 常俊林, 邵惠鹤. 基于滚动时间窗的最小二乘支持向量机回归估计方法及仿真[J]. 上海交通大学学报, 2004, 38(4): 524−527. doi: 10.3321/j.issn:1006-2467.2004.04.009

    YAN Weiwu, CHANG Junlin, SHAO Huihe. Least square SVM regression method based on sliding time window and its simulation[J]. Journal of Shanghai Jiaotong University, 2004, 38(4): 524−527(in Chinese). doi: 10.3321/j.issn:1006-2467.2004.04.009
    [23]
    王志杰, 朱晓星, 王锡辉, 等. 基于LSSVM的汽轮机阀门流量特性辨识及应用[J]. 中国电力, 2020, 53(9): 189−194.

    WANG Zhijie, ZHU Xiaoxing, WANG Xihui, et al. Identification and application of the flow characteristics of steam turbine valve based on LSSVM[J]. Electric Power, 2020, 53(9): 189−194(in Chinese).
    [24]
    高新波. 模糊聚类分析及其应用[M]. 西安: 西安电子科技大学出版社, 2004.
    [25]
    程志友, 陶青, 朱唯韦, 等. 基于改进模糊综合评判法的空压机状态评估[J]. 电测与仪表, 2020, 57(3): 12−18.

    CHENG Zhiyou, TAO Qing, ZHU Weiwei, et al. State evaluation of air compressor based on improved fuzzy comprehensive evaluation method[J]. Electrical Measurement & Instrumentation, 2020, 57(3): 12−18(in Chinese).

Catalog

    Article views (163) PDF downloads (28) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return