YU Jinwei, LU Yahong, WANG Runan, et al. Multi-time Scale Optimal Operation of Hydrogen-electricity Coupling System Considering Waste-heat Utilization[J]. Modern Electric Power. DOI: 10.19725/j.cnki.1007-2322.2023.0071
Citation: YU Jinwei, LU Yahong, WANG Runan, et al. Multi-time Scale Optimal Operation of Hydrogen-electricity Coupling System Considering Waste-heat Utilization[J]. Modern Electric Power. DOI: 10.19725/j.cnki.1007-2322.2023.0071

Multi-time Scale Optimal Operation of Hydrogen-electricity Coupling System Considering Waste-heat Utilization

Funds: Science and Technology Project of Ningbo Yongyao Power Investment Group Co., Ltd.(KJCX040).
More Information
  • Received Date: March 01, 2023
  • Accepted Date: March 11, 2024
  • Available Online: April 21, 2024
  • In the new power systems, new energy is growing rapidly, it has an impact on the safe operation of the power system, and the hydrogen-electric coupling system provides a commendable compensatory effect. To improve the absorption capacity of new energy, in this paper we proposed a multi-time scale optimization operation method for hydrogen-electric coupling system. Firstly, the optimal operation model of the hydrogen-electric coupling system was established. The coupling mechanism of each equipment was analyzed. Additionally, consideration was given to the waste heat utilization of the electrolytic cell and the fuel cell, leading to a coordinated utilization and mutual conversion of electricity-hydrogen-heat energy. Secondly, considering the impact of different time scales on the scheduling results, a multi-time scale optimal scheduling method was proposed based on model predictive control (MPC). In the previous dispatch period, considering the stochastic volatility of time-sharing electricity prices and renewable energy power generation, the operating cost of the hydrogen-electric coupling system was ensured to be minimal by coordinating the output of various equipment in the system. In the real-time scheduling stage, the MPC algorithm was applied to realize intra-day rolling optimization of the dispatch results of the day, so as to mitigate the economic impact of the error of the previous forecast. Finally, the simulation analysis was carried out for case study. The results indicate that the proposed multi-time scale optimization operation method can effectively suppress the fluctuations of wind turbine and photovoltaic power generation, thus enhancing the energy utilization rate and operation economy of the system.

  • [1]
    许传博, 刘建国. 氢储能在我国新型电力系统中的应用价值、挑战及展望[J]. 中国工程科学, 2022, 24(03): 89−99.

    XU Chuanbo , LIU Jianguo. Hydrogen energy storage in China’s new-type power system: Application value, challenges, and prospects[J]. Strategic Study of CAE, 2022, 24(03): 89−99(in Chinese).
    [2]
    潘光胜, 顾伟, 张会岩, 等. 面向高比例可再生能源消纳的电氢能源系统[J]. 电力系统自动化, 2020, 44(23): 1−10. doi: 10.7500/AEPS20200202003

    PAN Guangsheng, GU Wei, ZHANG Huiyan, et al. Electricity and hydrogen energy system towards accommodation of high proportion of renewable energy[J]. Automation of Electric Power Systems, 2020, 44(23): 1−10(in Chinese). doi: 10.7500/AEPS20200202003
    [3]
    曹蕃, 郭婷婷, 陈坤洋, 等. 风电耦合制氢技术进展与发展前景[J]. 中国电机工程学报, 2021, 41(06): 2187−2201.

    CAO Fan, GUO Tingting, CHEN Kunyang, et al. Key technology and application of the enenrgy internet based on cyber physical system[J]. Proceeding of the CESS, 2021, 41(06): 2187−2201(in Chinese).
    [4]
    邓杰, 姜飞, 王文烨, 何桂雄, 等. 考虑电热柔性负荷与氢能精细化建模的综合能源系统低碳运行[J]. 电网技术, 2022, 46(05): 1692−1704.

    DENG Jie, JIANG Fei, WANG Wenye, et al. Low-carbon optimized operation of integrated energy system considering electric heating flexible load and hydrogen energy refined modeling[J]. Power System Technology, 2022, 46(05): 1692−1704(in Chinese).
    [5]
    崔杨, 闫石, 仲悟之, 等. 含电转气的区域综合能源系统热电优化调度[J]. 电网技术, 2020, 44(11): 4254−4264.

    CUI Yang, YAN Shi, ZHONG Wuzhi, et al. Optimal thermoelectric dispatching of regional integrated energy system with power-to-gas[J]. Power System Technology, 2020, 44(11): 4254−4264(in Chinese).
    [6]
    陈锦鹏, 胡志坚, 陈颖光, 等. 考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化[J]. 电力自动化设备, 2021, 41(9): 48−55.

    CHEN Jinpeng, HU Zhijian, CHEN Yingguang, et al. Thermoelectric optimization of integrated energy system considering ladder-type carbon trading mechanism and electric hydrogen production[J]. Electric Power Automation Equipment, 2021, 41(9): 48−55 (in Chinese).
    [7]
    郭梦婕, 严正, 周云, 等. 含风电制氢装置的综合能源系统优化运行[J]. 中国电力, 2020, 53(01): 115−123.

    GUO Mengjie, YAN Zheng, ZHOU Yun, et al. Optimized operation design of integrated energy system with wind power hydrogen production[J]. Electric Power, 2020, 53(01): 115−123(in Chinese).
    [8]
    GE Pudong, HU Qinran, WU Qiuwei, et al. Increasing operational flexibility of integrated energy systemsby introducing power to hydrogen[J]. IET Renewable Power Generation, 2020, 14(3): 372−380. doi: 10.1049/iet-rpg.2019.0663
    [9]
    UTOMO O, ABEYSEKERA M, UGALDELOO C E. Optimal operation of a hydrogen storage and fuel cell coupled integrated energy system[J]. Sustainability, 2021, 13(6): 1−17.
    [10]
    孔令国, 蔡国伟, 李龙飞, 等. 风光氢综合能源系统在线能量调控策略与实验平台搭建[J]. 电工技术学报., 2018, 33(14): 3371−3384.

    KONG Lingguo, CAI Guowei, LI Longfei, et al. Establishment of on-line energy regulation strategy and experimental platform for wind-solar hydrogen integrated energy system[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3371−3384(in Chinese).
    [11]
    蒲雨辰, 李奇, 陈维荣, 等. 计及最小使用成本及储能状态平衡的电-氢混合储能孤岛直流微电网能量管理[J]. 电网技术., 2019, 43(3): 918−927.

    PU Yuchen, LI Qi, CHEN Weirong, et al. Energy management for island DC microgrid with hybrid electric-hydrogen energy storage system based on minimum utilization cost and energy storage state balance[J]. Power System Technology, 2019, 43(3): 918−927(in Chinese).
    [12]
    刘海涛, 朱海南, 李丰硕, 等. 计及碳成本的电-气-热-氢综合能源系统经济运行策略[J]. 电力建设, 2021, 42(12): 21−29. doi: 10.12204/j.issn.1000-7229.2021.12.003

    LIU Haitao, ZHU Hainan, LI Fengshuo, et al. Economic operation strategy of electric-gas-heat-hydrogen integrated energy system considering carbon cost[J]. Electric Power Construction, 2021, 42(12): 21−29(in Chinese). doi: 10.12204/j.issn.1000-7229.2021.12.003
    [13]
    赵为光, 董凤麟, 杨莹, 等. 电氢热多源联合的微能源网优化模型[J]. 黑龙江科技大学学报, 2021, 31(05): 634−641. doi: 10.3969/j.issn.2095-7262.2021.05.015

    ZHAO Weiguang, DONG Fenglin, YANG Ying, et al. Optimization model of combined micro energy network for EHR[J]. Journal of Heilongjiang University of Science & Technology, 2021, 31(05): 634−641(in Chinese). doi: 10.3969/j.issn.2095-7262.2021.05.015
    [14]
    PAN Guangsheng, GU Wei, QIU Haifeng, et al. Bi-level mixed-integer planning for electricity-hydrogen integrated energy system considering levelized cost of hydrogen[J]. Applied Energy, 2020, 270: 115176. doi: 10.1016/j.apenergy.2020.115176
    [15]
    随权, 马啸, 魏繁荣, 等. 计及燃料电池热-电综合利用的能源网日前调度优化策略[J]. 中国电机工程学报, 2019, 39(6): 1603−1613.

    SUI Quan , MA Xiao , WEI Fanrong, et al. Day-ahead scheduling optimization strategy of energy network considering fuel cell thermoelectricity utilization[J]. Proceedings of the CSEE, 2019, 39(6): 1603−1613(in Chinese).
    [16]
    裴煜, 宋天昊, 袁铁江, 等. 计及燃料电池热电联供的区域综合能源系统经济运行[J]. 电力系统及其自动化学报, 2021, 33(02): 142−150.

    PEI Yu, SONG Tianhao, YUAN Tiejiang, et al. Economic operation of regional integrated energy system considering combined heating and power generation with fuel cell[J]. Proceedings of the CSU-EPSA, 2021, 33(02): 142−150(in Chinese).
    [17]
    陈云, 刘东, 高飞, 等. 考虑电转气环节氢能精细化利用的区域综合能源系统日前优化调度[J]. 供用电, 2021, 38(11): 59−67.

    CHEN Yun, LIU Dong, CHEN Fei, et al. Day-ahead optimal dispatching of regional integrated energy system considering refined utilization of hydrogen in power to gas process[J]. Distribution & Utilization, 2021, 38(11): 59−67(in Chinese).
    [18]
    熊军华, 焦亚纯, 王梦迪. 计及电转气的区域综合能源系统日前优化调度[J]. 现代电力, 2022, 39(5): 554−561.

    XIONG Junhua, JIAO Yachun, WANG Mengdi. A day-ahead optimal scheduling of regional integrated energy system considering power to gas[J]. Modern Electric Power, 2022, 39(5): 554−561(in Chinese).
    [19]
    韩子娇, 李正文, 张文达, 等. 计及光伏出力不确定性的氢能综合能源系统经济运行策略[J]. 电力自动化设备, 2021, 41(10): 99−106.

    HAN Zijiao, LI Zhengwen, ZHANG Wenda, et al. Economic operation strategy of hydrogen integrated energy system considering uncertainty of photovoltaic output power[J]. Electric Power Automation Equipment, 2021, 41(10): 99−106(in Chinese).
    [20]
    李奇, 邹雪俐, 蒲雨辰, 等. 基于氢储能的热电联供型微电网优化调度方法[J]. 西南交通大学学报, 2023, 35(1): 23−29.

    LI Qi, ZOU Xueli, PU Yuchen, et al. Optimal schedule of combined heat-power microgrid based on hydrogen energy storage[J]. Journal of Southwest Jiaotong University, 2023, 35(1): 23−29(in Chinese).
    [21]
    由智恒. 基于MPC算法的无人驾驶车辆轨迹跟踪控制研究[D]. 长春: 吉林大学, 2018.

    YOU Zhiheng. Research on model predictive control-based trajectory tracking for unmanned vehicles[D]. Changchun: Jilin University, 2018(in Chinese).
    [22]
    杨海涛, 江晶晶, 赵敏, 等. 基于模型预测控制的区域综合能源系统运行优化方法[J]. 电气技术, 2022, 23(04): 7−13.

    YANG Haitao, JIANG Jingjing, ZHAO Min, et al. Operational optimization method of regional integrated energy system based on model predictive control[J]. Electrical Engineering, 2022, 23(04): 7−13(in Chinese).

Catalog

    Article views (91) PDF downloads (8) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return