ZHAO Zhenyu, LIU Xia. Optimal Allocation of Flexible Resources for Park-level Electric Heating Integrated Energy System Considering Demand Response[J]. Modern Electric Power. DOI: 10.19725/j.cnki.1007-2322.2023.0107
Citation: ZHAO Zhenyu, LIU Xia. Optimal Allocation of Flexible Resources for Park-level Electric Heating Integrated Energy System Considering Demand Response[J]. Modern Electric Power. DOI: 10.19725/j.cnki.1007-2322.2023.0107

Optimal Allocation of Flexible Resources for Park-level Electric Heating Integrated Energy System Considering Demand Response

Funds: Project Supported by Beijing Natural Science Foundation Project(8232013).
More Information
  • Received Date: March 21, 2023
  • Accepted Date: October 19, 2023
  • Available Online: November 08, 2023
  • To further improve the flexibility and renewable energy consumption ability of the integrated energy system, a two-layer optimization model for the park electricity-heating integrated energy system was proposed considering demand response requirements. By incorporating the uncertainty of renewable energy contributions and considering the characteristics of flexible resources, the electricity and thermal flexibility indicators of the integrated energy system were established for evaluation. In terms of demand response, the fuzzy C-means method was utilized to determine the time-of-use interval and reasonable time-of-use electricity price. The optimal configuration of the integrated energy system considers the participation of interruptible load and transferable load simultaneously. With all kinds of flexibility resources taken into account, a two-level optimal configuration model was established for electricity-heating integrated energy system in the park, aiming to optimize equipment capacity at the upper level and unit operation at the lower level. The calculation results indicate that the reasonable allocation of flexible resources can effectively reduce wind and solar curtailment rates, improve the system economy, and mitigate the insufficient flexibility rate through the integration of flexible resources. This enables rapid response to load and improve the absorption capacity of renewable energy.

  • [1]
    赵福林, 俞啸玲, 杜诗嘉, 等. 计及需求响应的含大规模风电并网下电力系统灵活性评计及需求响应的含大规模风电并网下电力系统灵活性评估[J]. 电力系统保护与控制, 2021, 49(1): 42−51.

    ZHAO Fulin, YU Xiaoling, DU Shijia, et al. Assessment on flexibility of a power grid with large-scale wind farm integration considering demand response[J]. Power System Protection and Control, 2021, 49(1): 42−51(in Chinese).
    [2]
    WANG Q, HODGE B. Enhancing power system operational flexibility with flexible ramping products: a review[J]. IEEE Transactions on Industrial Informatics, 2017, 13(4): 1652−1664. doi: 10.1109/TII.2016.2637879
    [3]
    YAMUJALA S, JAIN A. Enhancing power systems operational flexibility with ramp products from flexible resources[J]. Electric Power Systems Research, 2022, 202: 107599. doi: 10.1016/j.jpgr.2021.107599
    [4]
    International Energy Agency (IEA). Harnessing variable renewables: A guide to the balancing challenge[M]. OECD Publishing, 2011.
    [5]
    WU C, HUG G, KAR S. A functional approach to assessing flexible ramping products' impact on electricity market[J]. IEEE Power & Energy Society Innovative Smart Grid Technologies Conference, 2015.
    [6]
    WU C, HUG G, KAR S. Risk-limiting economic dispatch for electricity markets with flexible ramping products[J]. IEEE Transactions on Power Systems:A Publication of the Power Engineering Society, 2016, 31(3): 1990−2003.
    [7]
    王志强, 张馨月, 王珊, 等. 区域弃风供热模式与设备容量配置协同优化[J]. 电力建设, 2018, 39(10): 82−91.

    WANG Zhiqiang, ZHANG Xinyue, WANG Shan, et al. Cooperative optimization of regional heating mode using abandoned wind and equipment capacity configuration[J]. Electric Power Construction, 2018, 39(10): 82−91(in Chinese).
    [8]
    杨天蒙, 宋卓然, 娄素华, 等. 用于提高风电渗透率的复合储能容量优化研究[J]. 电网技术, 2018, 42(05): 1488−1494.

    YANG Tianmeng, SONG Zhuoran, LOU Suhua, et al. Sizing of hybrid energy storage system for improving wind power penetration[J]. Power System Technology, 2018, 42(05): 1488−1494(in Chinese).
    [9]
    张宁, 代红才, 胡兆光, 等. 考虑系统灵活性约束与需求响应的源网荷协调规划模型[J]. 中国电力, 2019, 52(02): 61−69.

    ZHANG Ning, DAI Hongcai, HU Zhaoguang, et al. A source-grid-load coordinated planning model considering system flexibility constraints and demand response[J]. Electric Power, 2019, 52(02): 61−69(in Chinese).
    [10]
    HANG B, KEZUNOVIC M. Impact on power system flexibility by electric vehicle participation in ramp market[J]. IEEE Transaction on Smart Grid, 2016, 7(3): 1285−1293. doi: 10.1109/TSG.2015.2437911
    [11]
    JIANG Xiumei, LI Qifen, YANG Yongwen, et al. Optimization of the operation plan taking into account the flexible resource scheduling of the integrated energy system[J]. Energy Reports, 2022, 8: 1752−1762. doi: 10.1016/j.egyr.2022.02.211
    [12]
    张磊, 罗毅, 罗恒恒, 等. 基于集中供热系统储热特性的热电联产机组多时间尺度灵活性协调调度[J]. 中国电机工程学报, 2018, 38(4): 985−998.

    ZHANG Lei, LUO Yi, LUO Hengheng, et al. Scheduling of integrated heat and power system considering multiple time-scale flexibility of CHP unit based on heat characteristic of DHS[J]. Proceedings of the CSEE, 2018, 38(4): 985−998(in Chinese).
    [13]
    周升彧, 戴赛, 许丹, 等. 考虑源侧灵活性改造及可调节电热负荷的电热联合调度模型[J]. 电网技术, 2020, 44(06): 2254−2262.

    ZHOU Shengyu, DAI Sai, XU Dan, et al. Optimal dispatching model of combined heat and power system considering source-side flexibility improvement and controllable heat-power load[J]. Power System Technology, 2020, 44(06): 2254−2262(in Chinese).
    [14]
    潘华, 姚正, 林顺富, 等. 基于信息间隙决策理论的含光热电站及热泵的综合能源系统低碳调度优化[J]. 现代电力, 2022, 39(02): 169−183. doi: 10.19725/j.cnki.1007-2322.2021.0058

    PAN Hua, YAO Zheng, LIN Shunfu, et al. Low-carbon dispatch optimization of integrated energy system including solar power plant and heat pump based on information gap decision theory[J]. Modern Electric Power, 2022, 39(02): 169−183(in Chinese). doi: 10.19725/j.cnki.1007-2322.2021.0058
    [15]
    张国梁. 基于灵活性指标的电源规划[D]. 北京:华北电力大学, 2021.
    [16]
    鲁宗相, 李海波, 乔颖. 高比例可再生能源并网的电力系统灵活性评价与平衡机理[J]. 中国电机工程学报., 2017, 37(01): 9−20.

    LU Zongxiang, LI Haibo, QIAO Ying. Flexibility evaluation and supply/demand balance principle of power system with high-penetration renewable electricity[J]. Proceedings of the CSEE, 2017, 37(01): 9−20(in Chinese).
    [17]
    高原, 杨贺钧, 郭凯军, 等. 考虑负荷季节特性的电价型需求响应最优定价策略[J]. 电力建设, 2023, 44(01): 53−66. doi: 10.12204/j.issn.1000-7229.2023.01.007

    GAO Yuan, YANG Hejun, GUO Kaijun, et al. Optimal pricing strategy of electricity price demand response considering seasonal characteristics of load[J]. Electric Power Construction, 2023, 44(01): 53−66(in Chinese). doi: 10.12204/j.issn.1000-7229.2023.01.007
    [18]
    石亮缘, 周任军, 张武军, 等. 采用深度学习和多维模糊C均值聚类的负荷分类方法[J]. 电力系统及其自动化学报., 2019, 31(07): 43−50.

    SHI Liangyuan, ZHOU Renjun, ZHANG Wujun, et al. Load classification method using deep learning and multi-dimensional fuzzy C-means clustering[J]. Proceedings of the CSU-EPSA, 2019, 31(07): 43−50(in Chinese).
    [19]
    唐捷, 胡秀珍, 任震, 等. 峰谷分时电价定价模型研究[J]. 电力需求侧管理, 2007(03): 12−15+32.

    TANG Jie, HU Xiuzhen, REN Zhen, et al. Research of peak-valley TOU pricing model[J]. Power Demand Side Management, 2007(03): 12−15+32(in Chinese).
    [20]
    PARVANIA M, FOTUHI-FIRUZABAD M, SHAHIDEHPOUR M. Optimal demand response aggregation in wholesale electricity markets[J]. IEEE Transactions on Smart Grid, 2013, 4(4): 1957−1965. doi: 10.1109/TSG.2013.2257894
    [21]
    王昀, 谢海鹏, 孙啸天, 等. 计及激励型综合需求响应的电-热综合能源系统日前经济调度[J]. 电工技术学报, 2021, 36(9): 1926−1934.

    WANG Yun, XIE Haipeng, SUN Xiaotian, et al. Day-ahead economic dispatch for electricity-heating integrated energy system considering incentive integrated demand response[J]. Transactions of China electrotechnical society, 2021, 36(9): 1926−1934(in Chinese).
    [22]
    林顺富, 曾旭文, 沈运帷, 等. 考虑灵活性需求的园区综合能源系统协同优化配置[J]. 电力自动化设备, 2022, 42(09): 9−17. doi: 10.16081/j.epae.202204079

    LIN Shunfu, ZENG Xuwen, SHEN Yunwei, et al. Collaborative optimal configuration of park-level integrated energy system considering flexibility requirement[J]. Electric Power Automation Equipment, 2022, 42(09): 9−17(in Chinese). doi: 10.16081/j.epae.202204079
    [23]
    张靠社, 冯培基, 张刚, 等. 考虑机会约束的多能源微电网双层优化配置[J]. 太阳能学报, 2021, 42(8): 41−48.

    ZHANG Kaoshe, FENG Peiji, ZHANG Gang, et al. Bi-level optimization configuration method for multi-energy microgrid considering chance constraints[J]. Acta Energiae Solaris Sinica, 2021, 42(8): 41−48(in Chinese).
    [24]
    孔祥玉, 杨群, 穆云飞, 等. 分时电价环境下用户负荷需求响应分析方法[J]. 电力系统及其自动化学报., 2015, 27(10): 75−80.

    KONG Xiangyu, YANG Qun, MU Yunfei, et al. Analysis method for customers demand response in time of using price[J]. Proceedings of the CSU-EPSA, 2015, 27(10): 75−80(in Chinese).

Catalog

    Article views (66) PDF downloads (7) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return