Citation: | HE Hengjing, ZHOU Shangli, ZHANG Leping, et al. Model and Methodology for Dynamic Carbon Emission Metering on Power Grid Side[J]. Modern Electric Power, 2025, 42(1): 39-45. DOI: 10.19725/j.cnki.1007-2322.2023.0126 |
The current situation of ambiguous boundaries in carbon emission accounting, slow updating of carbon emission factors, and the absence of spatio-temporal dynamics in power grids, necessitates the construction of a carbon emission metering model on transmission side, substation side, and distribution side as measuring nodes. The principle of QIO model states that the total amount of carbon emissions entering a node equals to the sum of the internal losses emissions of the node and the emissions flowing out of the node, Utilizing the electric energy metering network as a foundation, carbon emissions were measured for each link on the grid side using electric energy measurement data. The calculation results of carbon emissions and the associated factors exhibit the characteristics of spatial flexibility and temporal dynamics. Finally, the effectiveness of the method was validated through a numerical case study. The metering model has a positive significance for accurate carbon accounting for power grids, enabling a comprehensive grasping of the direction of carbon emissions, and providing a guidance to users in actively implementing carbon emission reduction.
[1] |
朱法华, 王玉山, 徐振, 等. 中国电力行业碳达峰、碳中和的发展路径研究[J]. 电力科技与环保, 2021, 37(3): 9−16. doi: 10.19944/j.eptep.1674-8069.2021.03.002
ZHU Fahua, WANG Yushan, XU Zhen, et al. Research on the development path of carbon peak and carbon neutrality in China's power industry[J]. Electric Power Technology and Environmental Protection, 2021, 37(3): 9−16(in Chinese). doi: 10.19944/j.eptep.1674-8069.2021.03.002
|
[2] |
招景明, 李经儒, 潘峰, 等. 电力碳排放计量技术现状及展望[J]. 电测与仪表, 2023, 60(3): 1−8.
ZHAO Jingming, LI Jingru, PAN Feng, et al. Carbon emissions and metrology for electricity: current status and future prospects[J]. Electrical Measurement & Instrumentation, 2023, 60(3): 1−8(in Chinese).
|
[3] |
Energy and CO2 Emissions in the OECD [EB/OL]. [2017-04-21]. http://www.iea.org/media/satatistics/Energy_and_CO2_Emissions_in_ the _ OECD. Pdf.
|
[4] |
陈丽霞, 孙弢, 周云. 电力系统发电侧和负荷侧共同碳责任分摊方法[J]. 电力系统自动化, 2018, 42(19): 102−112. doi: 10.7500/AEPS20171113004
CHEN Lixia, SUN Tao, ZHOU Yun. Method of carbon obligation allocation between generation side and demand side in power system[J]. Automation of Electric Power Systems, 2018, 42(19): 102−112(in Chinese). doi: 10.7500/AEPS20171113004
|
[5] |
EGGLESTON H S, BUENDIA L, MIWA K, et al. 2006 IPCC guidelines for national greenhouse gas inventories [R]. IPCC: National Greenhouse Gas Inventories Programme, 2006.
|
[6] |
张森林. “双碳”背景下优化调整电网碳排放因子的思考[J]. 中国电力企业管理, 2022, 08: 62−65. doi: 10.3969/j.issn.1007-3361.2022.15.026
|
[7] |
席云华, 黎立丰, 董楠. 电网企业碳排放核算存在问题及建议[J]. 中国电业, 2021(04): 88−89.
|
[8] |
MILLER G J, NOVAN K, JENN A. Hourly accounting of carbon emissions from electricity consumption[J]. Environ Res Lett, 2022, 044073 (17): 1-11.
|
[9] |
段声志, 陈皓勇, 郑晓东, 等. 碳市场背景下发电商竞价策略及电力市场均衡分析[J]. 电测与仪表, 2022, 59(5): 33−41.
DUAN Shengzhi, CHEN Haoyong, ZHENG Xiaodong, et al. Bidding strategy of electricity generation and electricity market equilibrium analysis under the background of carbon market[J]. Electrical Measurement & Instrumentation, 2022, 59(5): 33−41(in Chinese).
|
[10] |
TRANBERG B, CORRADI O, LAJOIE B, et al. Real-time carbon accounting method for the European electricity markets[J]. Energy Strategy Reviews, 2019, 100367(26): 1−4.
|
[11] |
KOPSAKANGAS - SAVOLAINEN M, MATTINEN M K, MANNINEN K , et al. Hourly-based greenhouse gas emissions of electricity-cases demonstrating possibilities for households and companies to decrease their emissions[J]. Journal of Cleaner Production, 2017(153): 384−396.
|
[12] |
CLAUß J , STINNER S, SOLLI C, et al. Evaluation method for the hourly average CO2eq. intensity of the electricity mix and its application to the demand response of residential heating[J]. Energies, 2019, 12(1345): 1−25.
|
[13] |
周天睿, 康重庆, 徐乾耀. 电力系统碳排放流分析理论初探[J]. 电力系统自动化, 2012, 36(7): 38−44.
ZHOU Tianrui, KANG Chongqing, XU Qianyao. Preliminary theoretical investigation on power system Carbon emission flow[J]. Automation of Electric Power Systems, 2012, 36(7): 38−44(in Chinese).
|
[14] |
康重庆, 程耀华, 孙彦龙. 电力系统碳排放流的递推算法[J]. 电力系统自动化, 2017, 41(18): 10−16. doi: 10.7500/AEPS20170502011
KANG Chongqing, CHENG Yaohua, SUN Yanlong. Recursive calculation method of carbon emission flow in power systems[J]. Automation of Electric Power Systems, 2017, 41(18): 10−16(in Chinese). doi: 10.7500/AEPS20170502011
|
[15] |
陈达, 鲜文军, 吴涛. 混合电力市场下碳排放流的分配[J]. 电网技术, 2016, 40(6): 1683−1688. doi: 10.13335/j.1000-3673.pst.2016.06.011
CHEN Da, XIAN Wenjun, WU Tao. Allocation of carbon emission flow in hybrid electricity market[J]. Power System Technology, 2016, 40(6): 1683−1688(in Chinese). doi: 10.13335/j.1000-3673.pst.2016.06.011
|
[16] |
QU S, WANG H X, LIANG S, et al. A Quasi-Input-Output model to improve the estimation of emission factors for purchased electricity from interconnected grids[J]. Applied Energy, 2017, 200: 249−259. doi: 10.1016/j.apenergy.2017.05.046
|
[17] |
KANEMOTO K, MORAN D, HERTWICH E G. Mapping the carbon footprint of nations[J]. Environ Sci Technol, 2016, 50(19): 10512−10517. doi: 10.1021/acs.est.6b03227
|
[18] |
TUKKER A , BULAVSKAYA T , GILJUM S, et al. The global resource footprint of nations: Carbon, water, land and materials embodied in trade and final consumption[EB/OL].https://www.exiobase.eu/index.php/publications/creea-booklet/72-creea-booklet-high-resolution.
|
[19] |
CHEN S, CHEN B. Tracking inter-regional carbon flows: a hybrid network model[J]. Environ Sci Technol, 2016, 50(9): 4731−4741. doi: 10.1021/acs.est.5b06299
|
[20] |
KODRA E, SHELDON S, DOLEN R, et al. The North American electric grid as an exchange network: an approach for evaluating energy resource composition and greenhouse gas mitigation[J]. Environ Sci Technol, 2015, 49: 13692−13698. doi: 10.1021/acs.est.5b03015
|
[21] |
王彦哲, 周胜, 王宇, 等. 中国核电和其他电力技术环境影响综合评价[J]. 清华大学学报 (自然科学版), 2021, 61(4): 377−384.
WANG Yanzhe, ZHOU Sheng, WANG Yu, et al. Comprehensive assessment of the environmental impact of China’s nuclear and other power generation technologies[J]. Journal of Tsinghua University (Science & Technology), 2021, 61(4): 377−384(in Chinese).
|