LI Lianbing, GAO Guoqiang, CHEN Weiguang, et al. Ultra Short Term Load Power Prediction Considering Feature Recombination and BiGRU-Attention-XGBoost Model[J]. Modern Electric Power. DOI: 10.19725/j.cnki.1007-2322.2023.0166
Citation: LI Lianbing, GAO Guoqiang, CHEN Weiguang, et al. Ultra Short Term Load Power Prediction Considering Feature Recombination and BiGRU-Attention-XGBoost Model[J]. Modern Electric Power. DOI: 10.19725/j.cnki.1007-2322.2023.0166

Ultra Short Term Load Power Prediction Considering Feature Recombination and BiGRU-Attention-XGBoost Model

Funds: Project Supported by Science and Technology Program of Hebei Province(20314301D).
More Information
  • Received Date: May 07, 2023
  • Accepted Date: November 29, 2023
  • Available Online: December 24, 2023
  • The ultra-short-term load forecasting, as a basic component of power system forecasting, is of great significance for production scheduling planning. However, the power load, being nonlinear, time-varying and uncertain in nature, necessitates the improvement of to prediction accuracy by fully exploiting its potential characteristics and conducting separate prediction. In this paper, a combined forecasting model of BiGRU-Attention-XGBoost based on ALIF-SE is proposed. The historical load series are decomposed into periodic series, fluctuation series and trend series based on ALIF-SE. An attention mechanism is employed to improve the BIGRU model. It is then combined with XGBoost model to construct a power load forecasting model based on time-varying weight combination. The experimental results demonstrate a significant improvement in prediction accuracy of the input model after ALIF-SE treatment. Moreover, the combined model exhibits good prediction effect for both working days and holidays, with the majority of the prediction errors below 5%. The mobility of the proposed method is verified by comparing the results of experiments with different load data sets. The experimental results demonstrate the effectiveness, accuracy, and feasibility of the proposed model.

  • [1]
    王栋. 电力系统负荷预测综述[J]. 电气开关, 2020, 58(01): 6−8+20.

    WANG Dong. The summary of power system load forecasting[J]. Electric Switchgear, 2020, 58(01): 6−8+20(in Chinese).
    [2]
    WANG Z, LI H, TANG Z, et al. User-level ultra-short-term load forecasting model based on optimal feature selection and bahdanau attention mechanism[J]. Journal of Circuits Systems and Computers, 2021, 30(15): 2150279. doi: 10.1142/S0218126621502790
    [3]
    廖旎焕, 胡智宏, 马莹莹, 等. 电力系统短期负荷预测方法综述[J]. 电力系统保护与控制, 2011, 39(01): 147−152. doi: 10.3969/j.issn.1674-3415.2011.01.028

    LIAO Nihuan, HU Zhihong, MA Yingying, et al. Review of the short-term load forecasting methods of electric power system[J]. Power System Protection and Control, 2011, 39(01): 147−152(in Chinese). doi: 10.3969/j.issn.1674-3415.2011.01.028
    [4]
    陈培垠, 方彦军. 基于卡尔曼滤波预测节假日逐点增长率的电力系统短期负荷预测[J]. 武汉大学学报(工学版), 2020, 53(02): 139−144.

    CHEN Peiyin, FANG Yanjun. Short-term load forecasting of power system for holiday point-by-point growth rate based on Kalman filtering[J]. Engineering Journal of Wuhan University, 2020, 53(02): 139−144(in Chinese).
    [5]
    JUAN F, RENDON S. Structural combination of seasonal exponential smoothing forecasts applied to load forecasting[J]. European Journal of Operational Research, 2019, 275(3): 916−924. doi: 10.1016/j.ejor.2018.12.013
    [6]
    曾林俊, 许加柱, 王家禹, 等. 考虑区间构造的改进极限学习机短期电力负荷区间预测[J]. 电网技术, 2022, 46(07): 2555−2563.

    ZENG Linjun, XU Jiazhu, WANG Jiayu, et al. Short-term electrical load interval forecasting based on improved extreme learning machine considering interval construction[J]. Power System Technology, 2022, 46(07): 2555−2563(in Chinese).
    [7]
    杨海柱, 田馥铭, 张鹏, 等. 基于CEEMD-FE和AOA-LSSVM的短期电力负荷预测[J]. 电力系统保护与控制, 2022, 50(13): 126−133.

    YANG Haizhu, TIAN Fuming, ZHANG Peng, et al. Short-term load forecasting based on CEEMD-FE-AOA-LSSVM[J]. Power System Protection and Control, 2022, 50(13): 126−133(in Chinese).
    [8]
    吴潇雨, 和敬涵, 张沛, 等. 基于灰色投影改进随机森林算法的电力系统短期负荷预测[J]. 电力系统自动化, 2015, 39(12): 50−55. doi: 10.7500/AEPS20140916005

    WU Xiaoyu, HE Jinghan, ZHANG Pei, et al. Power system short-term load forecasting based on improved random forest with grey relation projection[J]. Automation of Electric Power Systems, 2015, 39(12): 50−55(in Chinese). doi: 10.7500/AEPS20140916005
    [9]
    邹政达, 孙雅明, 张智晟. 基于蚁群优化算法递归神经网络的短期负荷预测[J]. 电网技术, 2005, 29(03): 59−63. doi: 10.3321/j.issn:1000-3673.2005.03.013

    ZHOU Zhengda, SUN Yaming, ZHANG Zhisheng. Short-term load forecasting based on recurrent neural network using ant colony optimization algorithm[J]. Power System Technology, 2005, 29(03): 59−63(in Chinese). doi: 10.3321/j.issn:1000-3673.2005.03.013
    [10]
    陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(8): 131−137. doi: 10.7500/AEPS20181012004

    LU Jixiang, ZHANG Qipei, YANG Zhihong, et al. Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of Electric Power Systems, 2019, 43(8): 131−137(in Chinese). doi: 10.7500/AEPS20181012004
    [11]
    刘友波, 吴浩, 刘挺坚, 等. 集成经验模态分解与深度学习的用户侧净负荷预测算法[J]. 电力系统自动化, 2021, 45(24): 57−64.

    LIU Youbo, WU Hao, LIU Tingjian, et al. User-side net load forecasting method integrating empirical mode decomposition and deep learning[J]. Automation of Electric Power Systems, 2021, 45(24): 57−64(in Chinese).
    [12]
    KONG W, DONG Z Y, JIA Y, et al. Short-term residential load forecasting based on LSTM recurrent neural network[J]. IEEE Transactions on Smart Grid, 2017, 10(1): 841−851.
    [13]
    HOUIMLI R, ZMAMI M, BEN-SALHA O. Short-term electric load forecasting in Tunisia using artificial neural networks[J]. Energy Systems, 2020, 11(2): 357−375. doi: 10.1007/s12667-019-00324-4
    [14]
    程换新, 黄震. 基于改进PSO优化RNN的短期电力负荷预测模型[J]. 电子测量技术, 2019, 42(20): 94−98.

    CHENG Huanxin, HUANG Zhen. Short-term electric load forecasting model based on improved PSO optimized RNN[J]. Electronic Measurement Technology, 2019, 42(20): 94−98(in Chinese).
    [15]
    SONG X Y, LIU Y T, XUE L, et al. Time-series well performance prediction based on long short-term memory (LSTM) neural network model[J]. Journal of Petroleum Science and Engineering, 2020, 186: 106682. doi: 10.1016/j.petrol.2019.106682
    [16]
    LÜ L L, WU Z Y, ZHANG J H, et al. A VMD and LSTM based hybrid model of load forecasting for power grid security[J]. IEEE Transactions on Industrial Informatics, 2022, 18(09): 6474−6482. doi: 10.1109/TII.2021.3130237
    [17]
    姚程文, 杨苹, 刘泽健. 基于CNN-GRU混合神经网络的负荷预测方法[J]. 电网技术, 2020, 44(09): 3416−3424.

    YAO Chengwen, YANG Ping, LIU Zejian. Load forecasting method based on CNN-GRU hybrid neural network[J]. Power System Technology, 2020, 44(09): 3416−3424(in Chinese).
    [18]
    韩富佳, 王晓辉, 乔骥, 等. 基于人工智能技术的新型电力系统负荷预测研究综述[J/OL]. 中国电机工程学报: 1-24[2023-04-25

    HAN Fujia, WANG Xiaohui, QIAO Ji, et al. Review on artificial intelligence based load forecasting research for the new-type power system[J/OL]. Proceedings of the CSEE: 1-24[2023-04-25
    [19]
    魏华栋, 陶媛, 蔡昌春, 等. 基于改进长短期记忆神经网络的短期负荷预测[J]. 电测与仪表, 2020, 57(19): 93−98. doi: 10.19753/j.issn1001-1390.2020.19.015

    WEI Huadong, TAO Yuan, CAI Changchun, et al. Short-term load forecasting based on improved long short-term memory neural network[J]. Electrical Measurement & Instrumentation, 2020, 57(19): 93−98(in Chinese). doi: 10.19753/j.issn1001-1390.2020.19.015
    [20]
    TAN M, YUAN S, LI S, et al. Ultra-short-term industrial power demand forecasting using LSTM based hybrid ensemble learning[J]. IEEE Transactions on Power Systems, 2020, 35(4): 2937−2948. doi: 10.1109/TPWRS.2019.2963109
    [21]
    李正浩. 基于NACEMD-GRU的组合型日前负荷预测方法[J]. 电网与清洁能源, 2021, 37(06): 43−50. doi: 10.3969/j.issn.1674-3814.2021.06.006

    LI Zhenghao. A combined method of day-ahead load forecasting based on NACEMD-GRU[J]. Power System and Clean Energy, 2021, 37(06): 43−50(in Chinese). doi: 10.3969/j.issn.1674-3814.2021.06.006
    [22]
    史含笑, 王雷春. 结合LSTM和自注意力机制的图卷积网络短期电力https://kns.cnki.net/kcms2/article/abstract?v=p7sfyaWOx3M_Tpupy5bROlc-TpyE360ugA1axRiSRPcx45S3eBE6BN1kvyPJgd4d-3H84gQo6wW4wgiryDXlkZf0a0Pq6DjjVD4I4Ssy69HCbCiTn6R1xlNDS0LCz0yv62TfNfp-Ucg=&uniplatform=NZKPT&language=CHS负荷预测[J/OL]. 计算机应用: 1-9[2023-04-25].https://kns.cnki.net/kcms2/article/abstract?v=p7sfyaWOx3M_Tpupy5bROlc-TpyE360ugA1axRiSRPcx45S3eBE6BN1kvyPJgd4d-3H84gQo6wW4wgiryDXlkZf0a0Pq6DjjVD4I4Ssy69HCbCiTn6R1xlNDS0LCz0yv62TfNfp-Ucg=&uniplatform=NZKPT&language=CHS.

    SHI Hanxiao, WANG Leichun. Short-term power load forecasting by graph convolutional network combining LSTM and self-attention mechanism[J/OL]. Journal of Computer Applications: 1-9[2023-04-25].https://kns.cnki.net/kcms2/article/abstract?v=p7sfyaWOx3M_Tpupy5bROlc-TpyE360ugA1axRiSRPcx45S3eBE6BN1kvyPJgd4d-3H84gQo6wW4wgiryDXlkZf0a0Pq6DjjVD4I4Ssy69HCbCiTn6R1xlNDS0LCz0yv62TfNfp-Ucg=&uniplatform=NZKPT&language=CHS.
    [23]
    DAI Y M, ZHOU Q, LENG M M, et al. Improving the Bi-LSTM model with XGBoost and attention mechanism: A combined approach for short-term power load prediction[J]. Applied Soft Computing, 2022, 130: 109632. doi: 10.1016/j.asoc.2022.109632
    [24]
    XUAN Y, SI W, ZHU J, et al. Multi-model fusion short-term load forecasting based on random forest feature selection and hybrid neural network[J]. IEEE Access, 2021, 99: 1−1.

Catalog

    Article views (141) PDF downloads (23) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return