Citation: | PAN Ting, XU Yanbin, WANG Yuqing, et al. Integrated Energy System Dispatch Optimization Considering Generalized Integrated Demand Response[J]. Modern Electric Power. DOI: 10.19725/j.cnki.1007-2322.2023.0173 |
Under the background of the goal of "carbon peaking and carbon neutrality", further improvement in the economy and low carbon of the operation of the integrated energy system (IES) is a crucial factor in facilitating the clean energy transformation and upgrading. Firstly, an integrated demand response (IDR) generalized demand response (IDR) is proposed. The organic Rankine Cycle (ORC)-waste heat boiler (WHB) equipment is introduced on the source side, while to achieve the interactive response of both supply and demand in IES, the user electric heat IDR is used on the load side. On this basis, a more flexible carbon capture operation mode is proposed, wherein the remaining power after the system coordination and dispatch is utilized for systematic carbon capture. Finally, with the objective of minimizing the overall cost of the system, a thermoelectric coupling IES economic low-carbon optimal scheduling model is constructed. Additionally, the issue of uncertainty in wind and solar output is addressed based on the opportunity constraint planning of sequence operations. The simulation demonstrates that compared with the traditional thermoelectric coupling IES model, the proposed model can significantly reduce the total operating cost and carbon emission of IES. Moreover, it can promote the consumption of new energy within the system.
[1] |
张沈习, 王丹阳, 程浩忠, 等. 双碳目标下低碳综合能源系统规划关键技术及挑战[J]. 电力系统自动化, 2022, 46(08): 189−207. doi: 10.7500/AEPS20210703002
ZHANG Shenxi, WANG Danyang, CHENG Haozhong, et al. Key technologies and challenges of low-carbon integrated energy system planning for carbon emission peak and carbon neutrality[J]. Automation of Electric Power Systems, 2022, 46(08): 189−207(in Chinese). doi: 10.7500/AEPS20210703002
|
[2] |
曾鸣, 许彦斌. “双碳”目标下如何提升我国电力系统供电保障能力[J]. 中国电力企业管理, 2021(28): 24−25. doi: 10.3969/j.issn.1007-3361.2021.28.007
ZENG Ming, XU Yanbin. How to improve the power supply assurance ability of Chinese electric power system under the “double target”[J]. China Power Enterprise Management, 2021(28): 24−25(in Chinese). doi: 10.3969/j.issn.1007-3361.2021.28.007
|
[3] |
曾鸣, 张硕. “十四五”电力规划的综合能源发展探析[J]. 中国电力企业管理, 2020(13): 26−28.
ZENG Ming, ZHANG Shuo. An analysis of comprehensive energy development in the "14th Five-Year Plan" of electric power[J]. China Power Enterprise Management, 2020(13): 26−28(in Chinese).
|
[4] |
杨莘博, 谭忠富, 林宏宇, 等. 计及需求响应及储能聚合商的分布式农村清洁能源系统运行优化模型[J]. 系统工程理论与实践, 2022, 42(12): 3319−3334. doi: 10.12011/SETP2021-3099
YANG Shenbo, TAN Zhongfu, LIN Hongyu, et al. Operation optimization model of distributed rural clean energy system considering demand response and energy storage aggregator[J]. Systems Engineering-Theory & Practice, 2022, 42(12): 3319−3334(in Chinese). doi: 10.12011/SETP2021-3099
|
[5] |
LI Yang, LI Kang, YANG Zhen, et al. Stochastic optimal scheduling of demand response-enabled microgrids with renewable generations: An analytical-heuristic approach[J]. Journal of Cleaner Production, 2022, 330: 129840. doi: 10.1016/j.jclepro.2021.129840
|
[6] |
王俐英, 林嘉琳, 宋美琴, 等. 考虑需求响应激励机制的园区综合能源系统博弈优化调度[J]. 控制与决策, 2023,38(11):3192-3200.
WANG Liying, LIN Jialin, SONG Meiqin, et al. Optimal dispatch of park integrated energy system considering demand response incentive mechanism[J]. Control and Decision,2023,38(11):3192-3200(in Chinese).
|
[7] |
栗然, 彭湘泽, 吕慧敏, 等. 考虑氢储能和需求响应的综合能源系统双层优化配置[J/OL]. 华北电力大学学报(自然科学版): 1−9[2022-09-14]. http://kns.cnki.net/kcmas/detail/13.1212.TM.20220712.1201.004.html.
LI Ran, PENG Xiangze, LV Huimin, et al. Two-layer optimal configuration for integrated energy system regarding hydrogen storage and demand response[J]. Journal of North China Electric Power University(Natural Science Edition): 1−9[2022-09-14]. http://kns.cnki.net/kcmas/detail/13.1212.TM.20220712.1201.004.html.
|
[8] |
MANSOUR-SAATLOO A, AGABALAYE-RAHVAR M, MIRZAEI M A, et al. Robust scheduling of hydrogen based smart micro energy hub with integrated demand response[J]. Journal of Cleaner Production, 2020, 267: 122041. ISSN: 0959−6526.
|
[9] |
LAOUID Y A A, KEZRANE C, LASBET Y, et al. Towards improvement of waste heat recovery systems: A multi-objective optimization of different organic rankine cycle configurations[J]. International Journal of Thermofluids, 2021, 11: 100100. doi: 10.1016/j.ijft.2021.100100
|
[10] |
崔杨, 郭福音, 付小标, 等. 供用能转换促进风电消纳的综合能源系统源荷协调优化调度[J]. 电网技术, 2022, 46(04): 1437−1447.
CUI Yang, GUO Fuyin, FU Xiaobiao, et al. Source-load coordinated optimal dispatch of integrated energy system based on conversion of energy supply and use to promote wind power accommodation[J]. Power System Technology, 2022, 46(04): 1437−1447(in Chinese).
|
[11] |
赵扉, 胡程平, 施云辉. 考虑碳捕集和风电出力不确定性和电热联合系统多阶段鲁棒优化的低碳调度[J]. 现代电力, 2023, 40(03): 363−371.
ZHAO Fei, HU Chengping, SHI Yunhui. Multi-stage low carbon robust dispatch of integrated electricity and heat system considering carbon capture and wind power uncertainty[J]. Modern Electric Power, 2023, 40(03): 363−371(in Chinese).
|
[12] |
李畸勇, 郑一飞, 刘斌, 等. 基于主从博弈的含碳捕集与热电联产综合能源系统优化运行[J/OL]. 电测与仪表. 1−11 [2022-09-27]. http://kns.cnki.net/kcms/detail/23.1202.TH.20220525.1810.010.html.
LI Jiyong, ZHENG Yifei, LIU Bin, et al. Optimal operation of an integrated energy system with carbon capture system and combined heating and power based on a master-slave game[J/OL]. Electrical Measurement & Instrumentation. 1−11 [2022-09-27]. http://kns.cnki.net/kcms/detail/23.1202.TH.20220525.1810.010.html.
|
[13] |
LIU Xiaoou. Research on optimal dispatch method of virtual power plant considering various energy complementary and energy low carbonization[J]. International Journal of Electrical Power & Energy Systems, 2022, 136: 107670. ISSN: 0142-0615.
|
[14] |
崔杨, 谷春池, 付小标, 等. 考虑广义电热需求响应的含碳捕集电厂综合能源系统低碳经济调度[J]. 中国电机工程学报, 2022, 42(23): 8431−8446.
CUI Yang, GU Chunchi, FU Xiaobiao, et al. Low-carbon economic dispatch of integrated energy system with carbon capture power plants considering generalized electric heating demand response[J]. Proceedings of the CSEE, 2022, 42(23): 8431−8446(in Chinese).
|
[15] |
周任军, 孙洪, 唐夏菲, 等. 双碳量约束下风电–碳捕集虚拟电厂低碳经济调度[J]. 中国电机工程学报, 2018, 38(06): 1675−1683+1904.
ZHOU Renjun, SUN Hong, TANG Xiafei, et al. Low-carbon economic dispatch based on virtual power plant made up of carbon capture unit and wind power under double carbon constraint[J]. Proceedings of the CSEE, 2018, 38(06): 1675−1683+1904(in Chinese).
|
[16] |
LI Yang, WANG Bin, YANG Zhen, et al. Optimal scheduling of integrated demand response-enabled community-integrated energy systems in uncertain environments[J]. IEEE Transactions on Industry Applications, 2021, 58(2): 2640−2651.
|
[17] |
金鹏, 艾欣, 许佳佳. 基于序列运算理论的孤立微电网经济运行模型[J]. 中国电机工程学报, 2012, 32(25): 52−59,10.
JIN Peng, AI Xin, XU Jiajia. An economic operation model for isolated microgrid based on sequence operation theory[J]. Proceedings of the CSEE, 2012, 32(25): 52−59,10(in Chinese).
|
[18] |
王俐英, 林嘉琳, 董厚琦, 等. 计及阶梯式碳交易的综合能源系统优化调度[J]. 系统仿真学报, 2022, 34(07): 1393−1404.
WANG Liying, LIN Jialin, DONG Houqi, et al. Optimal dispatch of integrated energy system considering ladder-type carbon trading[J]. Journal of System Simulation, 2022, 34(07): 1393−1404(in Chinese).
|
[19] |
张晓辉, 刘小琰, 钟嘉庆. 考虑奖惩阶梯型碳交易和电-热转移负荷不确定性的综合能源系统规划[J]. 中国电机工程学报, 2020, 40(19): 6132−6142.
ZHANG Xiaohui, LIU Xiaoyan, ZHONG Jiaqing. Integrated energy system planning considering a reward and punishment ladder-type carbon trading and electric-thermal transfer load uncertainty[J]. Proceedings of the CSEE, 2020, 40(19): 6132−6142(in Chinese).
|
[20] |
周鑫, 韩肖清, 李廷钧, 等. 计及需求响应和电能交互的多主体综合能源系统主从博弈优化调度策略[J]. 电网技术, 2022, 46(09): 3333−3346.
ZHOU Xin, HAN Xiaoqing, LI Tingjun, et al. Master-slave game optimal scheduling strategy for multi-agent integrated energy system based on demand response and power interaction[J]. Power System Technology, 2022, 46(09): 3333−3346(in Chinese).
|