Citation: | ZHAO Long, SUN Yi, WANG Xian, et al. Probabilistic Assessment and Interaction for Adjustable Potential of Thermostatically Controlled Loads Considering User Uncertainty[J]. Modern Electric Power. DOI: 10.19725/j.cnki.1007-2322.2023.0221 |
Accurate evaluation on the adjustable potential of air conditioner thermostatically controlled load cluster and its utilization can mitigate fluctuations in new energy such as photovoltaics, and it is of great significance in maintaining the safe and stable operation of power grids. Aiming to address the challenges related to model parameter generalization, physical concept weakening and poor robustness of data-driven methods, a probabilistic assessment method is proposed for the adjustable potential of thermostatically controlled load cluster, taking uncertainties into account. Firstly, the thermostatically controlled load cluster modeling based on hybrid model and data is utilized to track the actual load curve of the thermostatically controlled cluster in a day. Then, the robustness of the proposed method is validated based on KL divergence, considering the unmeasured building parameters and the uncertain user consumption behavior. Finally, the probabilistic assessment and interaction mechanism of the response capacity of the air conditioner load cluster are established based on the hybrid-driven model, taking a 10kV feeder line in Shandong Province as a practical instance. The results demonstrate the effectiveness of the proposed method in mitigating the power flow backflow and realizing the complete local consumption of distributed PV.
[1] |
卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(09): 171−191.
ZHUO Zhenyu, ZHANG Ning, XIE Xiaorong, et al. Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(09): 171−191(in Chinese).
|
[2] |
李明节, 陈国平, 董存, 等. 新能源电力系统电力电量平衡问题研究[J]. 电网技术, 2019, 43(11): 3979−3986.
LI Mingjie, CHEN Guoping, DONG Cun, et al. Research on power balance of high proportion renewable energy system[J]. Power System Technology, 2019, 43(11): 3979−3986(in Chinese).
|
[3] |
何金松, 叶鹏, 张涛, 等. 面向电力系统应用的空调负荷研究综述[J]. 沈阳工程学院学报(自然科学版), 2019, 15(04): 343−349.
HE Jinsong, YE Peng, ZHANG Tao, et al. Research overview of air conditioning load for power system application[J]. Journal of Shenyang Institute of Engineering(Natural Science), 2019, 15(04): 343−349(in Chinese).
|
[4] |
SHI Qingxin, CHEN C, ANDREA M, et al. Estimating the profile of incentive-based demand response (IBDR) by integrating technical models and social-behavioral factors[J]. IEEE Transactions on Smart Grid, 2020, 11(1): 171−183. doi: 10.1109/TSG.2019.2919601
|
[5] |
HASSAN F. The path of the smart grid[J]. IEEE Power and Energy Magazine, 2010, 8(1): 18−28. doi: 10.1109/MPE.2009.934876
|
[6] |
ZIADI Z, TAIRA S, OSHIRO, et al. Optimal power scheduling for smart grids considering controllable loads and high penetration of photovoltaic generation[J]. IEEE Transactions on Smart Grid, 2014, 5(5): 2350−2359. doi: 10.1109/TSG.2014.2323969
|
[7] |
HUI H X, DING Y, SHI O X, et al. 5G network - based internet of things for demand response in smart grid: A survey on application potential[J]. Applied Energy, 2020, 257: 113972−113986. doi: 10.1016/j.apenergy.2019.113972
|
[8] |
XIE K, HUI H X, DING Y. Review of modeling and control strategy of thermostatically controlled loads for virtual energy storage system[J]. Protection and Control of Modern Power Systems, 2019, 4(1): 1−13. doi: 10.1186/s41601-019-0115-7
|
[9] |
姜婷玉, 鞠平, 王冲. 考虑用户调节行为随机性的空调负荷聚合功率模型[J]. 电力系统自动化, 2020, 44(03): 105−113.
JIANG Tingyu, JU Ping, WANG Chong. Aggregated power model of air-conditioning load considering stochastic adjustment behaviors of consumers[J]. Automation of Electric Power Systems, 2020, 44(03): 105−113(in Chinese).
|
[10] |
姚垚, 张沛超, 王永权. 温控负荷参与快速频率调整的双层控制方法[J]. 中国电机工程学报, 2018, 38(17): 4987−4998+5296.
YAO Yao, ZHANG Peichao, WANG Yongquan, et al. A two-layer control method for thermostatically controlled loads to provide fast frequency regulation[J]. Proceedings of the CSEE, 2018, 38(17): 4987−4998+5296(in Chinese).
|
[11] |
CHENG Limin, BAO Yuqing. A day-ahead scheduling of large-scale thermostatically controlled loads model considering second-order equivalent thermal parameters model[J]. IEEE Access, 2020, 8(8): 102321−102334.
|
[12] |
杨秀, 傅广努, 刘方, 等. 考虑多重因素的空调负荷聚合响应潜力评估及控制策略研究[J]. 电网技术, 2022, 46(02): 699−714.
YANG Xiu, FU Guangnu, LIU Fang, et al. Potential evaluation and control strategy of air conditioning load aggregation response considering multiple factors[J]. Power System Technology, 2022, 46(02): 699−714(in Chinese).
|
[13] |
李亚平, 姚建国, 雍太有, 等. 居民温控负荷聚合功率及响应潜力评估方法研究[J]. 中国电机工程学报, 2017, 37(19): 5519−5528+5829.
LI Yaping, YAO Jianguo, YONG Taiyou, et al. Estimation approach to aggregated power and response potential of residential thermostatically controlled loads[J]. Proceedings of the CSEE, 2017, 37(19): 5519−5528+5829(in Chinese).
|
[14] |
王宏涛, 张利伟, 穆钢. 一种温控负荷模型参数优化方法及聚合能力评估[J]. 哈尔滨理工大学学报, 2020, 25(05): 23−31.
WANG Hongtao, ZHANG Liwei, MU Gang, et al. A parameter optimization method and evaluation of aggregation ability of thermostatically-controlled load model[J]. Journal of Harbin University of Science and Technology, 2020, 25(05): 23−31(in Chinese).
|
[15] |
艾欣, 赵阅群, 周树鹏. 空调负荷直接负荷控制虚拟储能特性研究[J]. 中国电机工程学报, 2016, 36(06): 1596−1603.
Al Xin, ZHAO Yuequn, ZHOU Shupeng, et al. Study on virtual energy storage features of air conditioning load direct load control[J]. Proceedings of the CSEE, 2016, 36(06): 1596−1603(in Chinese).
|
[16] |
HAO He, WU Di, LIAN Jianming, et al. Optimal coordination of building loads and energy storage for power grid and end user services[J]. IEEE Transactions on Smart Grid, 2018, 9(5): 4335−4345. doi: 10.1109/TSG.2017.2655083
|
[17] |
陈璨, 杜维柱, 白恺, 等. 空调温控负荷集群参与光伏消纳的潜力评估与互动框架[J]. 现代电力, 2024,41(3):479-489.
CHEN Can, DU Weizhu, BAI Kai, et al. Potential assessment and interaction framework of air conditioning thermostatically controlled load cluster participating in photovoltaic consumption[J]. Modern Electric Power,2024,41(3):479-489(in Chinese).
|
[18] |
ABIRI-JAHROMI, AMIR, BOUFFARD, et al. Contingency-type reserve leveraged through aggregated thermostatically-controlled loads-part I: characterization and control[J]. IEEE Transactions on Power Systems, 2016, 31(3): 1972−1980. doi: 10.1109/TPWRS.2015.2466175
|
[19] |
WALTER B, ANATOLY Z, LI J. A phase model approach for thermostatically controlled load demand response[J]. Applied Energy, 2018, 228: 667−680. doi: 10.1016/j.apenergy.2018.06.123
|
[20] |
MACKAY D. Information theory, inference, and learning algorithms[M]. Cambridge University Press, 2003.
|