HU Hongbin, JING Zhibin, GUO Qi, et al. Evaluation Approach for Wind and Solar Complementarity Considering Output Fluctuation and Intermittency[J]. Modern Electric Power. DOI: 10.19725/j.cnki.1007-2322.2023.0223
Citation: HU Hongbin, JING Zhibin, GUO Qi, et al. Evaluation Approach for Wind and Solar Complementarity Considering Output Fluctuation and Intermittency[J]. Modern Electric Power. DOI: 10.19725/j.cnki.1007-2322.2023.0223

Evaluation Approach for Wind and Solar Complementarity Considering Output Fluctuation and Intermittency

Funds: Science and Technology Major Project of Inner Mongolia Autonomous Region (2021ZD0026); National Natural Science Foundation of China (52107091); Fundamental Research Funds for the Central Universities(2023YQ002).
More Information
  • Received Date: June 19, 2023
  • Accepted Date: April 07, 2024
  • Available Online: May 13, 2024
  • The utilization of the wind and solar complementarity presents an effective approach to mitigating the uncertainty of renewable power output. The present study proposes complementarity indexes based on the fluctuation and intermittency of the renewable power output, in order to address the limitations of current indexes. The proposed indexes are subsequently employed to assess the complementarity of wind and solar in Ulanqab. Analysis results demonstrate that the northern region in Ulanqab exhibits higher degree of complementarity compared to the southern regions. The mitigation of fluctuation and intermittency of renewable power output cannot be maximized when a single renewable resource accounts for a higher proportion of the installed capacity in a hybrid system. The proposed indexes can be utilized to optimize the wind and solar installed capacity ratio to achieve the optimal complementary effect.

  • [1]
    刘吉臻. 大规模新能源电力安全高效利用基础问题[J]. 中国电机工程学报, 2013, 33(16): 1−8.

    LIU Jizhen. Basic issues of the utilization of large-scale renewable power with high security and efficiency[J]. Proceedings of the CSEE, 2013, 33(16): 1−8(in Chinese).
    [2]
    薛禹胜, 雷兴, 薛峰, 等. 关于风电不确定性对电力系统影响的评述[J]. 中国电机工程学报, 2014, 34(29): 5029−5040.

    XUE Yusheng, LEI Xing, XUE Feng, et al. A review on impacts of wind power uncertainties on power systems[J]. Proceedings of the CSEE, 2014, 34(29): 5029−5040(in Chinese).
    [3]
    REN Guorui, LIU Jinfu, WAN Jie, et al. Overview of wind power intermittency: Impacts, measurements, and mitigation solutions[J]. Applied Energy, 2017, 204: 47−65. doi: 10.1016/j.apenergy.2017.06.098
    [4]
    JURASZ J, CANALES F A, KIES A, et al. A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions[J]. Solar Energy, 2020, 195: 703−724. doi: 10.1016/j.solener.2019.11.087
    [5]
    CHONG W T, NAGHAVI M S, POH S C, et al. Techno-economic analysis of a wind– solar hybrid renewable energy system with rainwater collection feature for urban high-rise application[J]. Applied Energy, 2011, 88(11): 4067−77. doi: 10.1016/j.apenergy.2011.04.042
    [6]
    SINHA S, CHANDEL S S. Pre-feasibility analysis of solar-wind hybrid system potential in a complex hilly terrain[J]. International Journal of Emerging Technology and Advanced Engineering, 2013.
    [7]
    TAO M, YANG H, LIN L. A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island[J]. Applied Energy, 2014, 121(10): 149−158.
    [8]
    赵博文, 杨茂荣, 邬元, 等. 风光互补供电系统在内蒙古无电地区的应用[J]. 风能, 2017(05): 70−74.

    ZHAO Bowen, YANG Maorong, WU Yuan, et al. The application of the electricity supply system based on combining wind and solar energy in the areas without electricity in Inner Mongolia[J]. Wind Energy, 2017(05): 70−74(in Chinese).
    [9]
    DIRK S, HEIN DIETER B, CHRISTOPHER J. On the spatiotemporal variability and potential of complementarity of wind and solar resources[J]. Energy Convers Manage, 2020, 218: 113016. doi: 10.1016/j.enconman.2020.113016
    [10]
    刘怡, 肖立业, Haifeng WANG, 等. 中国广域范围内大规模太阳能和风能各时间尺度下的时空互补特性研究[J]. 中国电机工程学报, 2013, 33(25): 20−26.

    LIU Yi, XIAO Liye, WANG Haifeng, et al. Tempor- spatial complementarities between China’s wide-area wind and solar energy at different time scales[J]. Proceedings of the CSEE, 2013, 33(25): 20−26(in Chinese).
    [11]
    REN G R, WAN J, LIU J F, et al. Spatial and temporal assessments of complementarity for renewable energy resources in China[J]. Energy, 2019, 177: 262−275. doi: 10.1016/j.energy.2019.04.023
    [12]
    KAPICA J. Global complementarity of renewable energy sources[R]. Complementarity of Variable Renewable Energy Sources. Academic Press, 2022: 141−170.
    [13]
    GUEZGOUZ M, JURASZ J, CHOUAI M, et al. Assessment of solar and wind energy complementarity in Algeria[J]. Energy Conversion and Management, 2021, 238: 114170. doi: 10.1016/j.enconman.2021.114170
    [14]
    白格平, 任国瑞, 苏雁飞, 等. 乌兰察布地区风资源波动性及聚合特性分析[J]. 电网与清洁能源, 2022, 38(07): 81−91.

    BAI Geping, REN Guorui, SU Yanfei, et al. Analysis of wind resource characteristics of fluctuation and aggregation in the region of Ulanqab[J]. Power System and Clean Energy, 2022, 38(07): 81−91(in Chinese).
    [15]
    王捷儒, 姚锦烽, 朴哲勇, 等. 吉林西部风能太阳能资源互补特性研究[J]. 高原气象, 2022, 41(04): 1086−1095.

    WANG Jieru, YAO Jinfeng, PU Zheyong, et al. An analysis of complementarity of wind and solar energy resources in West Jilin[J]. Plateau Meteorology, 2022, 41(04): 1086−1095(in Chinese).
    [16]
    佟小林, 乌兰, 王超, 等. 内蒙古地区风能、太阳能资源互补性分析[J]. 内蒙古气象, 2009(03): 32−33.

    TONG Xiaolin, WU Lan, WANG Chao, et al. Complementary analysis on wind and solar energy resources of Inner Mongolia[J]. Meteorology Journal of Inner Mongolia, 2009(03): 32−33(in Chinese).
    [17]
    Copernicus Climate Change Service (C3S). ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), date of access [EB/OL].https://cds.climate.copernicus.eu/cdsapp#!/home[2023-10-08].
    [18]
    刘鸿波, 董理, 严若婧, 等. ERA5 再分析资料对中国大陆区域近地层风速气候特征及变化趋势再现能力的评估[J]. 气候与环境研究, 2021, 26(03): 299−311.

    LIU Hongbo, DONG Li, YAN Ruojing, et al. Evaluation of near-surface wind speed climatology and long-term trend over China’s mainland region based on ERA5 reanalysis[J]. Climatic and Environmental Research, 2021, 26(03): 299−311(in Chinese).
    [19]
    JIANG H, YANG Y, BAI Y, et al. Evaluation of the total, direct, and diffuse solar radiations from the ERA5 reanalysis data in China[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(1): 47−51.
    [20]
    REN Guorui, WAN Jie, LIU Jinfu, et al. Characterization of wind resource in China from a new perspective[J]. Energy, 2019, 167: 994−1010. doi: 10.1016/j.energy.2018.11.032
    [21]
    PRASAD A A, TAYLOR R A, KAY M. Assessment of solar and wind resource synergy in Australia[J]. Applied Energy, 2017, 190: 354−367. doi: 10.1016/j.apenergy.2016.12.135
    [22]
    POTTER C W, GRIMIT E, NIJSSEN B. Potential benefits of a dedicated probabilistic rapid ramp event forecast tool[C]//2009 IEEE/PES Power Systems Conference and Exposition. IEEE, 2009: 1−5.

Catalog

    Article views (65) PDF downloads (4) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return