DAI Jinglong, BAI Xiaoqing, BAO Haibo. Probabilistic Optimal Power Flow by Considering the Uncertainty of Source and Demand Side[J]. Modern Electric Power, 2016, 33(1): 34-40.
Citation: DAI Jinglong, BAI Xiaoqing, BAO Haibo. Probabilistic Optimal Power Flow by Considering the Uncertainty of Source and Demand Side[J]. Modern Electric Power, 2016, 33(1): 34-40.

Probabilistic Optimal Power Flow by Considering the Uncertainty of Source and Demand Side

More Information
  • Received Date: May 22, 2015
  • Published Date: February 13, 2016
  • In this paper, a probabilistic optimal power flow analysis model under electricity market environment is proposed, and is solved by unscented transform method based on symmetric sampling strategy. In order to reveal the market laws and the weaknesses of the operating system by considering probability, the uncertainties of renewable generation output, load demand and bidding are taken into account in the proposed model. In addition, probability information is transferred through nonlinear transformation by using unscented transform, in which the ratio and high order information parameters are introduced to reduce the local effect and high order errors, and its correlation impact on stochastic variables have been analyzed. Numerical results of IEEE 30 bus and 118 bus test systems show that the implementation of unscented transformation is simple and efficient, can accurately deal with probabilistic optimal power flow problem of electricity market, and the output statistic information of operation characteristics can provide more reliable, comprehensive references for evaluating operation status of electricity market.
  • Gregor Verbic,Claudio A. Ca izares.Probabilistic Optimal Power Flow in Electricity Markets Based on a Two Point Estimate Method[J].IEEE Trans. on Power Systems,2006,21(4):18831893.
    王敏,丁明.考虑分布式电源的静态电压稳定概率评估[J].中国电机工程学报,2010,30(25):1722.
    潘炜,刘文颖,杨以涵.概率最优潮流的点估计算法[J].中国电机工程学报,2008,28(16):2833.
    黎静华,韦化,莫东.含风电场最优潮流的 Wait and See 模型与最优渐近场景分析[J].中国电机工程学报,2012,32(22):1523.
    王锐,顾伟,孙蓉,等.基于概率最优潮流的风电接入能力分析[J].电网技术,2011,35(12):214220.
    丁明,李生虎,黄凯.基于蒙特卡罗模拟的概率潮流计算[J].电网技术,2001,25(11):1014.
    Rodrigues A B,Da Silva M G.Probabilistic assessment of available transfer capacity based on Monte Carlo method with sequential simulation[J].IEEE Trans. on Power Systems,2007,22(1):484492.
    Morales J M,Perez Ruiz J.Point estimate schemes to solve the probabilistic power flow[J].IEEE Trans. on Power Systems,2007,22(4):15941601.
    杨欢,邹斌.含相关性随机变量的概率潮流三点估计法[J].电力系统自动化,2012,36(15):5156.
    胡泽春,王锡凡,张显,等.考虑线路故障的随机潮流[J].中国电机工程学报,2005,25(24):2633.
    Schellenberg A,Rosehart W,Aguado J.Introduction to cumulant based probabilistic optimal power flow[J].IEEE Trans. on Power Systems,2005,20(2):11841186.
    石东源,蔡德福,陈金富,等.计及输入变量相关性的半不变量法概率潮流计算[J].中国电机工程学报,2012,32(28):104113.
    Julier S,Uhlman J.Unscented filtering and nonlinear estimation[J].Proceedings of the IEEE,2004,92(3):401422.
    Julier S,Uhlman J.A new method for nonlinear transformation of means and covariances in filters and estimators[J].IEEE Trans. on Automation Control,2000,45(3):477482.
    鲍海波,韦化.基于无迹变换的含大规模风电场电力系统概率最优潮流计算[J].电力系统自动化,2014,38(12):4653.
    Wei H,Sasaki H,Yokoyama R,et al.A interior point nonlinear programming for optimal power flow problems with a novel data structure [J].IEEE Trans. on Power Systems,1998,13(3):870877.
    Karaki S H,Chedid R B,Ramadan R.Probabilistic performance assessment of autonomous solar-wind energy conversion systems[J].IEEE Trans. on Energy Conversion,1999,14(3):766772.
    Julier S,Uhlman J.Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations [C]//Proceedings of the American Control Conference,AK.May 810,2002.
    Julier S.The spherical simplex unscented transformation [C]//Proceedings of the American Control Conference,USA.June 46,2003.
    陈雁,文劲宇,程时杰.考虑输入变量相关性的概
    率潮流计算方法[J].中国电机工程学报,2011,31(22):8087.
    潘雄,周明,孔晓民,等.风速相关性对最优潮流的影响[J].电力系统自动化,2013,37(6):3741.
    吴巍,汪可友,李国杰.计及光伏发电相关性的多重积分法概率潮流计算[J].中国电机工程学报,2015,35(3):568575.
  • Cited by

    Periodical cited type(9)

    1. 杨军峰,戴赛,朱军飞,李京,李辉,黄国栋,林星宇,唐俊杰. 基于径向基神经网络的可用输电能力概率分析. 电工电能新技术. 2022(01): 31-41 .
    2. 许丹,丁强,林星宇,乐彦婷,唐俊杰. 基于离散傅里叶变换矩阵的概率最优潮流计算方法. 电力系统保护与控制. 2021(01): 9-16 .
    3. 陈晨,李端超,王海伟,苏寒,徐晶晶. 考虑不确定性的综合能源系统日前经济调度. 电力科学与技术学报. 2021(02): 24-30 .
    4. 陈芷欣,丁家满. 基于概率盒理论的源荷不确定性最优潮流. 电子测量技术. 2021(07): 61-68 .
    5. 杨少瑜,黄国栋,林星宇,乐彦婷,唐俊杰. 基于拉格朗日插值法的概率建模方法及其在概率潮流分析中的应用. 现代电力. 2021(04): 378-385 . 本站查看
    6. 李成豪,王淳,尹发根,王涛. 含潮流路由器的配电网最优潮流计算. 电力系统保护与控制. 2019(06): 1-8 .
    7. 曹华珍,代景龙,唐俊熙,高崇,赵懿祺. 基于置信度变换的区间动态最优潮流. 电力系统及其自动化学报. 2018(11): 126-132 .
    8. 何国飞,郭小璇,鲍海波,罗家勇,李江伟. 考虑需求响应和分布式电源的主动配电网概率最优潮流. 广西电力. 2017(05): 7-12 .
    9. 霍凌宇,李慧聪,张君泉. 多目标配网电力系统随机交流最优潮流. 自动化与仪器仪表. 2017(12): 40-45 .

    Other cited types(10)

Catalog

    Article views (1135) PDF downloads (536) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return