LI Na, WANG Lei, ZHANG Wenyue, et al. Research on the Partition Model of Long Period Peak and Valley Time Based on High Dimensional Data Clustering[J]. Modern Electric Power, 2016, 33(4): 67-71.
Citation: LI Na, WANG Lei, ZHANG Wenyue, et al. Research on the Partition Model of Long Period Peak and Valley Time Based on High Dimensional Data Clustering[J]. Modern Electric Power, 2016, 33(4): 67-71.

Research on the Partition Model of Long Period Peak and Valley Time Based on High Dimensional Data Clustering

More Information
  • Received Date: August 24, 2015
  • Revised Date: October 30, 2016
  • Published Date: August 13, 2016
  • In this paper, in order to make the results of peak and valley time division reflect the load difference of each period objectively and be applicable in a long period of time (e.g., 1 year), a time division model is presented by combining processing of high-dimension data sampling set and K-means clustering analysis. First of all, a data sample set covering all load information within a long period of time (e.g., 1 year) is built by using the processing method of high-dimension data. Secondly, the peak and valley time division model based on the high-dimension data sample set is built by using K- means clustering analysis. Finally, the numerical simulation of proposed model is carried out by combining the load data of the whole year in certain district, and the final division result of the peak and valley time can be output on the basis of verifying the rationality of the model.
  • 连振洲,温步瀛,江岳文.基于负荷曲线分布特征的峰谷时段划分和修正策略研究[J].电网与清洁能源,2014(7):1519.[2] 丁宁.基于DSM的峰谷时段划分及分时电价的研究[D].南京:南京理工大学,2002.[3] 乔慧婷.基于密度聚类的峰谷时段划分方法研究[D].北京:华北电力大学,2011.[4] 刘菁菁.基于因素分析法的峰谷时段划分的研究[D].天津:河北工业大学,2006.[5] 林旻,朱艳卉,胡百林.基于供电成本的峰谷时段划分及分时电价研究[J].华东电力,2005(12):9091.[6] 赵娟,谭忠富,李强.我国峰谷分时电价的状况分析[J].现代电力,2005,22(2):8285.[7] 戴诗容,雷霞,程道卫等.电动汽车峰谷分时充放电电价研究[J].电网与清洁能源,2013,29(7):7782.[8] 翟娜娜.基于用户需求响应的峰谷时段划分研究[D].北京:华北电力大学,2011.[9] 李泓泽,李婷婷.峰谷分时电价对供需双方的影响分析[J].现代电力,2008(4):8792.[10]刘严,谭忠富,乞建勋.峰谷分时电价设计的优化模型[J].中国管理科学,2005,13(5):8792.[11]周东华.数据挖掘中聚类分析的研究与应用[D].天津:天津大学,2006.
  • Cited by

    Periodical cited type(13)

    1. 张咏桥,张强,潘文明,郭俊. 面向多维度配电网用户典型负荷数据的模糊聚类研究. 机械设计. 2024(S1): 146-152 .
    2. 谭风雷,徐刚,李义峰,陈昊,何嘉弘. 基于相似日和相似时刻的变压器顶层油温预测方法. 电力工程技术. 2022(02): 193-200 .
    3. 刘仲民,呼彦喆,高敬更,王治国. 基于改进FCM算法的季节负荷谷平峰时段划分研究. 计算机与数字工程. 2022(06): 1381-1386+1397 .
    4. 何英静,叶泽,魏文. 考虑用户需求价格弹性的峰谷分时电价时段划分研究. 价格月刊. 2022(12): 1-9 .
    5. 李耀龙,呼彦喆,高敬更,王治国. 基于改进模糊聚类算法的峰谷时段划分研究. 计算机与数字工程. 2022(12): 2837-2842 .
    6. 赵会茹,张士营,赵一航,刘红雨,邱宝红. 基于自适应噪声完备经验模态分解-样本熵-长短期记忆神经网络和核密度估计的短期电力负荷区间预测. 现代电力. 2021(02): 138-146 . 本站查看
    7. 江兵,李国荣,孙赵盟,庞宗强. 基于长短期记忆神经网络和改进型K-means聚类算法的居民峰谷时段划分模型. 现代电力. 2021(06): 620-629 . 本站查看
    8. 谭风雷,张军,马宏忠. 基于趋势变化分段的电力负荷组合预测方法. 华北电力大学学报(自然科学版). 2020(02): 17-24 .
    9. 张琳,许可,黄耀,廖恒,汪龙. 基于模糊聚类的园区配网峰谷特性和潜力分析研究. 南方能源建设. 2020(01): 27-32 .
    10. 杨莘博,谭忠富,喻小宝,谭清坤,德格吉日夫,林宏宇. 基于峰谷分时电价的某工业园区多能互补系统多情景运营优化模型. 水电能源科学. 2019(08): 196-201 .
    11. 尚靖博,左万利. 基于清晰有理数均值的新匹配聚类算法. 吉林大学学报(理学版). 2018(02): 399-401 .
    12. 潘春玲. 限价指令驱动市场中信息聚类分析模型研究. 现代电子技术. 2018(06): 169-171+175 .
    13. 曾楠,许元斌,罗义旺,刘青,刘燕秋,张欢. 基于分布式聚类模型的电力负荷特性分析. 现代电力. 2018(01): 71-77 . 本站查看

    Other cited types(8)

Catalog

    Article views (913) PDF downloads (217) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return