SUN He, ZHANG Jiancheng. Active Disturbance Rejection Control of DC Solid State Transformer[J]. Modern Electric Power, 2018, 35(2): 87-94.
Citation: SUN He, ZHANG Jiancheng. Active Disturbance Rejection Control of DC Solid State Transformer[J]. Modern Electric Power, 2018, 35(2): 87-94.

Active Disturbance Rejection Control of DC Solid State Transformer

More Information
  • Received Date: May 18, 2017
  • Revised Date: April 08, 2018
  • Published Date: April 08, 2018
  • In order to improve the disturbance rejection ability of DC solid state transformer (DCSST) which is applied as the key connection device between high voltage DC distribution grid and low voltage DC microgrid, a novel control strategy based on active disturbance rejection control (ADRC) is proposed to stabilize the DC output voltage. The controller is designed based on the analysis of the DCSST circuit model, the tuning method that is dependent on gain bandwidth is given through pole assignment based on linear active disturbance rejection control (LADRC) scenario, and obtained parameters are applied to state feedback gain and state observation gain of nonlinear ADRC to achieve rapid non-overshoot response of system. Experiment results show that proposed control strategy and ADRC parameter tuning method are feasible, and the DCSST output voltage achieves faster response speed and stronger disturbance rejection ability than that of conventional PI control.
  • Baran M E, Mahajan N R. DC distribution for industrial systems: opportunities and challenges[J]. IEEE Transactions on Industry Applications , 2002, 39(6):15961601.[2] Jung J H, Kim H S, Ryu M H, et al. Design Methodology of Bidirectional CLLC Resonant Converter for High-Frequency Isolation of DC Distribution Systems[J]. IEEE Transactions on Power Electronics, 2013, 28(4):17411755.[3] 宋强, 赵彪, 刘文华,等. 智能直流配电网研究综述[J]. 中国电机工程学报, 2013, 33(25):919.[4] Xu L, Chen D. Control and Operation of a DC Microgrid With Variable Generation and Energy Storage[J]. IEEE Transactions on Power Delivery, 2011, 26(4):25132522.[5] 吴卫民, 何远彬, 耿攀,等. 直流微网研究中的关键技术[J]. 电工技术学报, 2012, 27(1):98106.[6] 张犁, 孙凯, 吴田进,等. 基于光伏发电的直流微电网能量变换与管理[J]. 电工技术学报, 2013, 28(2):248254.[7] Tan N M L, Abe T, Akagi H. Design and Performance of a Bidirectional Isolated DC-DC Converter for a Battery Energy Storage System[J]. IEEE Transactions on Power Electronics, 2012, 27(3):12371248. [8] 金一丁, 宋强, 刘文华. 基于公共直流母线的链式可拓展电池储能系统及控制[J]. 电力系统自动化, 2010, 34(15): 6670.[9] 刘教民, 孙玉巍, 付超,等. 基于电力电子变压器的电池储能并网系统及其自抗扰控制[J]. 高电压技术, 2017, 43(1):131139.[10]Fan H, Li H. A distributed control of input-series-output-parallel bidirectional dc-dc converter modules applied for 20 kVA solid state transformer[C]// Applied Power Electronics Conference and Exposition. IEEE Xplore, 2011:939945.[11]李建国, 赵彪, 宋强,等. 适用于中压直流配网的多电平直流链固态变压器[J]. 中国电机工程学报, 2016, 36(14):37173725.[12]赵彪, 宋强, 刘文华, 等. 用于柔性直流配电的高频链直流固态变压器[J]. 中国电机工程学报, 2014, 34(25): 42954303.[13]贾祺, 赵彪, 严干贵,等. 基于高频链直流变压器的柔性中压直流配电系统分析[J]. 电力系统保护与控制, 2016, 44(16):9098.[14]石华楷, 孙贤大, 郭自勇,等. 15kV/400V直流变压器的设计与研制[J]. 南方电网技术, 2016, 10(4):6369.[15]韩京清. 自抗扰控制技术—估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2013.[16]Alonso A R, Sebastian J, Lamar D G, et al. An overall study of a Dual Active Bridge for bidirectional DC/DC conversion[C]// Energy Conversion Congress and Exposition. IEEE Xplore, 2010:11291135. [17]Gao Z. Scaling and bandwidth-parameterization based controller tuning[C]// American Control Conference,2003. Proceedings of the IEEE,2003, 6:49894996. [18]Li D, Gao Z, Chen X, et al. Tuning Method for Second-order Active Disturbance Rejection Control[C]// Control Conference. IEEE, 2011:63226327. [19]谢惠藩, 张尧. 林凌雪, 等. 基于时间最优和自抗扰跟踪的广域紧急直流功率支援控制[J]. 电工技术学报, 2010,25(8): 145153,173.[20]李述清, 张胜修, 刘毅男, 等.根据系统时间尺度整定自抗扰控制器参数[J]. 控制理论与应用, 2012,29(1): 125129.
  • Cited by

    Periodical cited type(1)

    1. 王要强,贾显益,赖锦木,陈天锦,吕忠涛,梁军. 基于比例重复控制的MMC-SST子模块电容纹波电压抑制策略. 电力系统保护与控制. 2024(15): 46-57 .

    Other cited types(0)

Catalog

    Article views (488) PDF downloads (9) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return