QIAN Jianhui, YIN Peng, DENG Xuehua, et al. The Day-ahead Economic Dispatch Considering Time-of-use Pricing Incentives for Load Aggregators[J]. Modern Electric Power, 2019, 36(4): 31-37.
Citation: QIAN Jianhui, YIN Peng, DENG Xuehua, et al. The Day-ahead Economic Dispatch Considering Time-of-use Pricing Incentives for Load Aggregators[J]. Modern Electric Power, 2019, 36(4): 31-37.

The Day-ahead Economic Dispatch Considering Time-of-use Pricing Incentives for Load Aggregators

More Information
  • Received Date: June 09, 2018
  • Published Date: August 08, 2019
  • In view of the problem that small and medium-sized load resources cannot enter the market to participate in system power balance regulation, load aggregation vendors can integrate small and medium-sized power consumers as peaking load regulation resources. The time-of-use electricity price can optimize the load curve and reduce the load aggregator's compensation cost to regulate peaking load. This paper proposes the source-load interaction rule with which load aggregators participate in peaking load regulation by scheduling load curtailment contracts under time-of-use price incentives. With the aim of minimizing system operating cost, a day-ahead scheduling optimization model is built. The scheduling scheme economy under the three scenarios before and after coordination of the time-of-use price and the load aggregator is compared and analyzed. The simulation results show that the source-load interaction model can effectively reduce the unit's operation cost compared with separate optimization and improve the system's wind power accommodation level and the economic benefits.
  • 朱文超. 计及用户响应不确定性的负荷聚合商运营决策模型研究[D].北京:华北电力大学,2016.
    高赐威,李倩玉,李慧星,等.基于负荷聚合商业务的需求响应资源整合方法与运营机制[J].电力系统自动化,2013,37(17):7886.
    GAO Ciwei, LI Qianyu, LI Huixing, et al. Methodology and operation mechanism of demand response resources integration based on load aggregator[J]. Automation of Electric Power Systems, 2013,37(17): 7886.
    IRIA J, SOARES F, MATOS M, et al. Optimal supply and demand bidding strategy for an aggregator of small prosumers[J]. Applied Energy, 2018, 213.
    张静页,王磊,刘顺桂.负荷聚合商参与可中断负荷项目的成本效益分析[J].南方电网技术,2016,10(8):7481.
    ZHANG Jingye, WANG Lei, LIU Shungui. Cost-benefit analysis of load aggregator participating in interruptible load program[J]. Southern Power System Technology, 2016,10(8):7481.
    文刚,翁维华,赵岩,等.考虑负荷聚集商参与的源荷互动双层优化模型[J].电网技术, 2017,41(12): 3956 3963.
    WEN Gang, WENG Weihua, ZHAO Yan,et al. A bi-level optimal dispatching model considering source-load interaction integrated with load aggregator[J]. Power System Technology,2017,41(12): 39563963.
    李春燕,王东,张鹏,等.计及负荷聚合商调度优先权的独立微网双层实时调度模型[J].电力系统自化,2017,41(6):3743,167.
    LI Chunyan, WANG Dong, ZHANG Peng, et al. Double layer real-time scheduling model of independent microgrid considering scheduling priority of load aggregators[J]. Automation of Electric Power Systems, 2017,41(6):3743,167.
    张开宇,宋依群,严正.考虑用户违约可能的负荷聚合商储能配置策略[J].电力系统自动化, 2015,39(17):127133.
    ZHANG Kaiyu, SONG Yiqun, YAN Zheng. Energy storage capacity optimization for load aggregators considering probability of demand response resources' breach[J]. Automation of Electric Power Systems, 2015, 39(17):127133.
    高赐威,李倩玉,李扬.基于DLC的空调负荷双层优化调度和控制策略[J].中国电机工程学报,2014,34(10): 15461555.
    GAO Ciwei, LI Qianyu, LI Yang. Bi-level optimal dispatch and control strategy for air-conditioning load based on direct load control[J]. Proceedings of the CSEE, 2014,34(10): 15461555.
    吴玮,周建中.分时电价下三峡梯级电站在日前电力市场中的优化运营[J].电网技术, 2005(13): 1014,19.
    WU Wei, ZHOU Jianzhong. Day ahead optimization schedules of three gorges cascade hydropower stations based on time of use electricity price[J]. Power System Technology, 2005(13): 1014,19.
    GKATZIKIS L, KOUTSOPOULOS I, SALONIDIS T. The role of aggregators in smart grid demand response markets[J]. IEEE Journal on Selected Areas in Communications, 2013.
    LIU Mingxi, SHI Yang, LIU Xiaotao. Distributed MPC of aggregated heterogeneous thermostatically controlled loads in smart grid[J]. IEEE Transactions on Industrial Electronics, 2016,63(2):11201129.
    GUAN Wailin, TAN Yanghong, ZHANG Haixia, et al. Distribution system feeder reconfiguration considering different model of DG sources[J]. International Journal of Electrical Power and Energy Systems, 2015,68:210221.
    夏叶,康重庆,陈天恩,等.电力用户参与风电消纳的日前市场模式[J].电力系统自动化,2015,39(17):120126.
    XIA Ye, KANG Chongqing, CHEN Tianen, et al. Day-ahead market mode with power consumers participation in wind power accommodation[J]. Automation of Electric Power Systems, 2015,39(17): 120126.
    牛文娟,李扬,王蓓蓓.考虑不确定性的需求响应虚拟电厂建模[J].中国电机工程学报,2014,34(22):36303637.
    NIU Wenjuan, LI Yang, WANG Beibei. Demand response based virtual power plant modeling considering uncertainty[J]. Proceedings of the CSEE, 2014,34(22):36303637.
    刘旭,杨德友,刘铖,等.考虑用户满意度的含风电场多目标环境经济调度[J].现代电力, 2017,34(3): 4451.
    LIU Xu, YANG Deyou, LIU Cheng, et al. Multi-objective economic emission dispatching for power grid integrated with wind farms by considering customers' satisfaction[J]. Modern Electric Power, 2017,34(3):4451.
    刘阳升,周任军,李星朗,等.碳排放权交易下碳捕集机组的厂内优化运行[J].电网技术, 2013,37(2):295300.
    LIU Yangsheng, ZHOU Renjun, LI Xinglang, et al. Inside-plant optimal operation of carbon capture unit under carbon emission right trade[J]. Power System Technology, 2013,37(2):295300
  • Cited by

    Periodical cited type(8)

    1. 任洪波,王楠,吴琼,时珊珊,方陈,万莎. 考虑阶梯型碳交易的多负荷聚合商协同优化调度与成本分配. 电力建设. 2024(02): 171-182 .
    2. 梁学良. 基于机会约束规划的供电网负荷均衡调度方法. 自动化技术与应用. 2024(08): 172-175 .
    3. 刘天乐,黄婧杰,杨洪明,刘科明,徐志强. 考虑用户满意度变化和差异的智能小区代理商定价及智能用电服务计划. 现代电力. 2023(02): 153-160 . 本站查看
    4. 蔡军,谢航,谢涛,段盼. 基于改进K-Means++分时电量聚类与行业用电行为分析. 科学技术与工程. 2021(27): 11624-11631 .
    5. 何沁春,杨秀媛. 泛在电力物联网中将家电可控负荷转化成智能负荷的方法研究. 发电技术. 2020(01): 94-102 .
    6. 周宁,刘文学,李嘉媚,艾芊,王亮,李山. 基于合作博弈论与综合需求响应的负荷聚合商集群优化运营策略. 水电能源科学. 2020(08): 202-206 .
    7. 王燕,杨秀媛,徐剑锋,卜思齐,徐智蔷. 民用可控负荷参与需求响应的控制策略. 发电技术. 2020(06): 638-649 .
    8. 郑广宇,李嘉媚,殷爽睿,艾芊. 基于负荷聚合商的电热耦合系统需求侧管理. 电器与能效管理技术. 2019(16): 78-83 .

    Other cited types(8)

Catalog

    Article views (418) PDF downloads (107) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return