基于特征辨识与净负荷解耦的含分布式资源集群用户基线负荷估计方法

A Baseline Load Estimation Method for Distributed Resource Cluster Users Based on Feature Identification and Net Load Decoupling

  • 摘要: 我国配电台区的居民用户集群中,购置电动汽车或安装分布式光伏的用户正逐渐增加,该类分布式资源差异化的用电特性,使集群基线负荷估计结果失准。为解决上述问题,提出一种适用于含分布式资源集群用户的基线负荷估计方法。首先,辨识用户所属类型。其次,构建小波卷积神经网络–长短期记忆网络(wavlet convolutional neural network – long short-term memory,WCNN-LSTM)解耦净负荷曲线,并估计个体用户基线负荷。最后,将两者叠加,估计用户集群基线负荷。综合考虑各类分布式资源特性,构建多个差异化用电场景,并进行基线负荷估计。结果表明:该解耦方法可使得传统基线负荷估计方法性能提升45%~87%;在不同数据集中,该方法的估计性能偏差不超过30%。上述分析说明,对于不同的基线负荷估计场景,该方法具有较强的适应性,可有效提升基线负荷估计精度。

     

    Abstract: In the residential user clusters of distribution areas in China, the number of users purchasing electric vehicles or installing distributed photovoltaics is gradually increasing. The differentiated electricity usage characteristics of these distributed resources lead to inaccurate baseline load estimation for the clusters. To address this issue, a baseline load estimation method for clusters with distributed resources is proposed. First, the user type is identified; second, a wavelet convolutional neural network – long short-term memory (WCNN-LSTM) is used to decouple the net load curve and estimate the individual user's baseline load. Finally, the baseline loads of the user cluster are estimated by summing the individual estimations. By considering the characteristics of various distributed resources, multiple differentiated usage scenarios are constructed for baseline load estimation. The results show that the proposed decoupling method improves the performance of traditional baseline load estimation methods by 45% to 87%. In different datasets, the estimation performance deviation of this method does not exceed 30%. The above analysis indicates that this method has strong adaptability for different baseline load estimation scenarios and can effectively improve the accuracy of baseline load estimation.

     

/

返回文章
返回