Robust Least Square Estimation for Transmission Line Parameter Identification Based on IGG Criterion
-
摘要: 针对实测数据中会存在粗差而传统最小二乘不具备抗差能力,本文将IGG(Institute of Geodesy & Geophysics, Chinese Academy of Sciences)抗差方法应用到输电线路参数辨识中,提出了基于IGG准则的抗差最小二乘的输电线路参数辨识方法。具体的,本文在介绍基于双端PMU(Phasor Measurement Units)数据的线路线性数学模型和相应的最小二乘辨识的基础上,通过对目标函数的改造,引入基于IGG法的抗差准则,即对有效的观测信息保权,对可利用观测信息降权,对有害观测信息拒绝,从而使得改造后的最小二乘方法具备了较强的抗差能力。基于PSCAD仿真数据的测试验证了本文方法的有效性、抗噪能力及抗差能力;基于实测PMU数据的运行参数辨识结果表明了本文方法的实用性。Abstract: For the parameter identification of transmission line, there often exist the gross errors in the measured data, and it is lacking of robustness with the traditional least square estimation. In this paper, the IGG (Institute of Geodesy & Geophysics, Chinese Academy of Sciences) robust estimation is applied to identify the transmission line parameter, and parameter identification of transmission line by robust least square estimation is proposed based on IGG robust criterion. In detail, robust criterion is introduced by IGG method through renovation of objective function based on circuit linear mathematical model of dual terminal PMU (Phasor Measurement Units) data and corresponding least square identification. Therefore, the right of effective observation information can be protected and cut down, and harmful observation information is denied, which make modified least square estimation has stronger robustness. The simulation results based on PSCAD data verify the effectiveness, noise immunity ability and robust ability of the proposed method. Furthermore, the results based on the field PMU data show the practicability of the proposed method.
-
Key words:
- transmission line /
- parameter identification /
- robust least square /
- IGG robust criterion /
- PMU data
-
[1] 胡中慧,傅中,杨道文,等. 500kV输电线路零序阻抗的测量及研究[J]. 电力系统保护与控制,2009,37(14):9092. [2] 韦恒,周迪,王毅. 基于故障录播装置的双回输电线路参数在线测量方法[J]. 电力系统保护与控制,2011,39(23):138142. [3] 梁志瑞,武长青,苏海峰,等. 一种耦合传输线参数在线测量方法[J]. 电力系统保护与控制,2012,40(8):126130. [4] 吴昊,王承民,张焰. 一种基于π型等值的线路参数估计方法[J]. 现代电力,2011,28(1):4851. [5] Il-Dong Kim, Raj K. Aggarwal. A study on the on-line measurement of transmission line impedances for improved relaying protection[J]. Electrical Power and Energy Systems, 2006, 28(6): 359366. [6] 柴京慧,李书敏,何桦,等. 基于PMU及多时间断面的输电网参数估计[J]. 电力系统自动化,2009, 33(11):4952. [7] 李钦,项凤雏,卢建刚,等. 基于SCADA及PMU多时段量测信息的独立线路参数估计方法[J]. 电网技术,2011,35(2):105109. [8] Robert E Wilson, Gary A. Zevenbergen, Daniel L. Mah, et al. Calculation of transmission line parameters from synchronized measurements[J]. Electric Machines and Power Systems, 1999, 27(12): 12691278. [9] 王茂海,鲍捷,齐霞,等. 基于PMU实测数据的输电线路参数在线估计方法[J]. 电力系统自动化,2010,34(1):2527. [10] 丁蓝. 基于PMU的输电线路参数辨识与戴维南等值研究[D]. 北京:华北电力大学,2011:2425. [11] 李晋伟,樊友平,张择宁. 基于最小二乘类算法的站用异步电机参数辨识问题的研究[J]. 现代电力,2013,30(3):4953. [12] 周江文. 抗差最小二乘法[M]. 武汉:华中理工大学出版社,1997. [13] 李响,刘玲群,郭志忠. 抗差最小二乘法状态估计[J]. 继电器,2003,31(7):4953. [14] 牛胜锁,刘颖,梁志瑞. 基于广域测量和抗差最小二乘法的电力系统谐波状态估计[J]. 电力系统保护与控制,2012,40(8):1014. [15] 景继,王建. 基于抗差最小二乘的水工检测数据粗差探测[J]. 水电能源科学,2007,25(6):8184. -

计量
- 文章访问数: 872
- HTML全文浏览量: 6
- PDF下载量: 460
- 被引次数: 0