含风电机组的配电网中分布式电源的最优配置

王枭, 刘天琪, 李兴源

王枭, 刘天琪, 李兴源. 含风电机组的配电网中分布式电源的最优配置[J]. 现代电力, 2014, 31(3): 12-16.
引用本文: 王枭, 刘天琪, 李兴源. 含风电机组的配电网中分布式电源的最优配置[J]. 现代电力, 2014, 31(3): 12-16.
WANG Xiao, LIU Tianqi, LI Xingyuan. Optimized Location of Distributed Generation in Distribution Network With Wind Turbine Generators[J]. Modern Electric Power, 2014, 31(3): 12-16.
Citation: WANG Xiao, LIU Tianqi, LI Xingyuan. Optimized Location of Distributed Generation in Distribution Network With Wind Turbine Generators[J]. Modern Electric Power, 2014, 31(3): 12-16.

含风电机组的配电网中分布式电源的最优配置

基金项目: 国家自然科学基金项目(51037003);国家863高技术基金项目(2011AA05A119)
详细信息
    作者简介:

    王枭(1986-),男,硕士研究生,研究方向为电力系统稳定与分析计算,E-mail:wxiao333@foxmail.com;刘天琪(1962-),女,教授,博士生导师,研究方向为电力系统分析与稳定计算、高压直流输电、调度自动化等。

  • 中图分类号: TM74

Optimized Location of Distributed Generation in Distribution Network With Wind Turbine Generators

  • 摘要: 为解决配电网中含风电机组分布式电源的最优配置问题,首先根据风速概率密度分布函数,推导出风电机组的输出功率函数,之后构建了含有分布式电源的固定投资费用、负荷增量与分布式电源出力的相关费用和以最小网损和最小常规发电机有功出力为目标的风电机组的惩罚成本的目标函数,并以配电系统中电压、电流等为约束条件,提出了一种以自适应惯性粒子群算法为全局搜索和以混沌算法为局部搜索的混合粒子群算法来获取目标函数的最优解。最后通过IEEE 69节点系统验证了所提出模型和算法的优异性。
    Abstract: In order to solve the problem of optimized locating distributed generation in the distribution network with the wind turbines, the output power function is deduced according to the probability density function of wind speed. Then an objective function of penalty cost of wind turbine generators is built with such indexes as fixed investment cost and cost associated with load increment and output power of distributed generation, and minimum system loss and minimum active power output of conventional generators. In addition, voltage and current in distribution network are taken as constraint condition. Furthermore, the hybrid particle swarm optimization approach with the adaptive inertia particle swarm algorithm is used for global searching, and chaotic algorithm is used for local searching, which can obtain the optimized solution of objective function. In the end, the advantage of proposed model and algorithm is verified through IEEE 69 system.
  • 王承煦, 张源. 风力发电[M].北京:中国电力出版社, 2003.
    陕华平, 肖登明, 薛爱东. 大型风电场的风资源评估[J]. 华东电力, 2006,34(2): 1519.
    Dorvlo. Estimating wind speed distribution. Energy Convers. Manage[J].2002,43:23112318.
    刘峻,何世恩.建设坚强智能电网助推酒泉风电基地发展[J].电力系统保护与控制, 2010, 38(21):1923.
    Kuri B. Distributed generation planning in the deregulated electricity supply industry[C]∥ IEE Power Engineering Society General Meeting, Denver, 2004: 20852089.
    崔金兰,刘天琪.分布式发电技术及其并网问题研究综述[J].现代电力,2007,24(3):5357.
    韦钢. 分布式电源及其并网时对电网的影响[J].高电压技术, 2007, 23(1):3640.
    杨琦,马世英,宋云亭,唐晓骏.分布式电源规划方案综合评判方法[J].电网技术,2012,36(2):212216.
    杨毅, 韦钢.含分布式电源的配电网模糊优化规划[J].电力系统自动化,2010,34(13):1923.
    张节谭,程浩忠,姚良忠等. 分布式风电源选址定容规划研究[J]. 中国电机工程学报,2009, 29(16): 17.
    苏勋文,米增强.基于运行数据的风电机组建模方法[J].电力系统保护与控制,2010,38(9):4955.
    陈金富,陈海焱.含大型风电场的电力系统多时段动态优化潮流[J].中国电机工程学报,2006,26(3):3135.
    汪泳涛,汪琳红,罗松涛.新型混合粒子群算法在电力系统最优潮流计算中的应用[J].可再生能源,2013, 31(6):3437.
    Clerc M, Kennedy J. The particle swarm: explosion, stability, and convergence in a multidimensional complex space [J].IEEE Trans.Evolut.Comput. , 2002, 6:5873.
    Shi Y, Eberhart R C. A modified particle swarm optimization. In: Proc. of the IEEE CEC, 1998:6973.
    王凌, 郑大钟, 李清生.混沌优化方法的研究进展[J].计算技术与自动化,2001,20(1):15.
    任博强,彭鸣鸿.计及风电成本的电力系统短期经济调度建模[J].电力系统保护与控制,2010,38(14):6772.
计量
  • 文章访问数:  909
  • HTML全文浏览量:  21
  • PDF下载量:  596
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-06
  • 发布日期:  2014-06-08

目录

    /

    返回文章
    返回