Abstract:
With the large-scale development of regional new energy, one of the main objectives is to improve access scale of new energy systems. In this paper, the mathematical model for wind-PV-Hydro complementary system is built, which is considered as a sending area system, and the relative standard deviation are taken as an index to measure the volatility characteristics. The number of wind turbines and photovoltaic cells are taken as the variables, to enlarge the access scale of new energy and to minimize the volatility index value of main grid are regarded as the objective function. By considering various types of constraints, the mathematical model is solved by using the multi-objective particle swarm optimization algorithm. In the end, the model for IEEE-14 bus system is built, solved and analyzed by taking Qinghai region resource as example, and the simulation results verify the correctness and effectiveness of configuration optimization method.