基于HS-Clustering的风电场机组分组功率预测

高小力, 张智博, 田启明, 刘永前

高小力, 张智博, 田启明, 等. 基于HS-Clustering的风电场机组分组功率预测[J]. 现代电力, 2017, 34(3): 12-18.
引用本文: 高小力, 张智博, 田启明, 等. 基于HS-Clustering的风电场机组分组功率预测[J]. 现代电力, 2017, 34(3): 12-18.
GAO Xiaoli, ZHANG Zhibo, TIAN Qiming, et al. Wind Power Forecasting for Clustering Wind Turbines Based on HS-Clustering[J]. Modern Electric Power, 2017, 34(3): 12-18.
Citation: GAO Xiaoli, ZHANG Zhibo, TIAN Qiming, et al. Wind Power Forecasting for Clustering Wind Turbines Based on HS-Clustering[J]. Modern Electric Power, 2017, 34(3): 12-18.

基于HS-Clustering的风电场机组分组功率预测

详细信息
    作者简介:

    高小力(1989—),女,硕士,工程师,研究方向为风电功率预测及风资源评估,E-mail:gaoxiaoli0608@163.com;
    张智博(1988—),男,博士,工程师,研究方向为新能源发电技术, E-mail:zhangzhibo@nwepdi.com。

  • 中图分类号: TK89

Wind Power Forecasting for Clustering Wind Turbines Based on HS-Clustering

  • 摘要: 为了寻求风电场功率预测精度和计算效率二者的平衡,提出了一种基于霍普金斯统计量与聚类算法(HS-Clustering)的风电场机组分组功率预测方法,该方法将霍普金斯统计量与聚类算法的优势有效结合,采用霍普金斯统计量确定场内机组分组个数,通过聚类算法识别不同机组的相似性将风电场分成不同的机组群,然后对每组机群分别建立功率预测模型,从而叠加得到整场输出功率;另外以实测风速、实测功率及二者组合作为机组分组模型输入,分析其对预测精度的影响程度。实例分析表明基于HS-Clustering的分组预测方法可以显著提高预测精度,同时保证较高的计算效率;风速是影响分组效果的主要因素,对于某些分组模型,功率又可以作为风速的重要补充。
    Abstract: In order to balance the forecast accuracy and computational efficiency, a wind power forecasting method for clustering wind turbines is proposed based on effective combination of Hopkins statistics (HS) and clustering methods, in which Hopkins Statistics is used to determine the clustering number of a wind farm, and wind turbines in a wind farm are clustered into several groups according to the identifying of similar characteristics by clustering method. Then power forecasting model of each clustering group is built separately, whose power output is added to obtain whole power output of the wind farm. In addition, the real-time monitoring wind speed, power output and their combination are taken as the inputs for clustered group model, and their influences on the accuracy of clustering forecast model are analyzed. The case analysis shows that the HS-Clustering based forecasting method can effectively forecast the output power of the whole wind farm with better accuracy and higher computational efficiency, wind speed is the main factor affecting clustering results, and wind power can be regarded as an important additional factor as to certain group models.
  • Liu Y Q, Shi J, Yang Y P, et al. Short-term wind-power prediction based on wavelet transform-support vector machine and statistics-characteristics analysis[J]. IEEE Transactions on Industry Applications, 2012, 48(4):11361141.[2] Catalao J P S, Pousinho H M I, Mendes V M F. Short-term wind power forecasting in Portugal by neural networks and wavelet transform[J]. Renewable Energy, 2011(36):12451251.[3] 张慧玲, 高小力, 刘永前, 等. 三种主流风电场功率预测算法适应性对比研究[J]. 现代电力, 2015, 32(6): 713.[4] 刘永前, 朴金姬, 韩爽. 风电场输出功率预测中两种神经网络算法的研究[J]. 现代电力, 2011, 28(2): 4952.[5] Ali M, Ilie I S, Milanovic J V, et al. Probabilistic clustering of wind generators[C]. IEEE Power and Energy Society General Meeting, July 2529, 2010, Minneapolis, USA, 16.[6] Yan Jie, Liu Yongqian, Han Shuang, et al. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine[J]. Renewable and Sustainable Energy Reviews, 2013(27): 613621.[7] 岑添云. 风电场数据特征提取及风电功率实时预测研究[D]. 保定: 华北电力大学, 2014.[8] 阎洁, 刘永前, 韩爽, 等. 考虑流动相关性的风电场机组分组功率预测方法[J]. 现代电力, 2015, 32(1): 2530.[9] Banerjee A, Dave R N. Validating clusters using the Hopkins statistic[C]. Fuzzy Systems, in Proceedings of 2004 IEEE International Conference, July 2529, 2004, Budapest, Hungary, 149153.[10]Han J W, Kamber M, Pei J. Data mining: concepts and techniques[M]. Morgan Kaufmann Publishers, USA, 2001.[11]赖家文, 彭显刚, 王洪森, 等. 霍普金斯统计在短期负荷预测中的应用探讨[J]. 广东电力, 2013, 26(8): 8998.[12]Kanungo T, Mount D M, Netanyahu N S, et al. An efficient K-means clustering algorithm: analysis and implementation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24: 881892.[13]李智勇, 吴晶莹, 吴为麟, 等. 基于自组织特征映射神经网络的电力用户负荷曲线聚类[J]. 电力系统自动化, 2008, 32 (12): 6670.[14]Nie F P, Zeng Z N, Tsang I W, et al. Spectral embedded clustering: a framework for in-sample and out-of-sample spectral clustering[J]. IEEE Transactions on Neutral Network, 2011(22): 17961808.
  • 期刊类型引用(4)

    1. 陈苏豫,顾亦然,张腾飞. 基于DLT-Kmedoids算法的用电负荷聚类分析. 计算机技术与发展. 2024(04): 205-211 . 百度学术
    2. 王雁凌,马洪宇,成一平,梁冰. 基于支持向量回归和K均值聚类的降温负荷组合测算模型. 现代电力. 2019(03): 51-57 . 本站查看
    3. 李君卫,汤亚芳,郝正航,冒国龙,姜有泉. 聚类分析及其在电力系统中的应用综述. 现代电力. 2019(03): 1-10 . 本站查看
    4. 唐立力,陈国彬,刘超,牛培峰. 基于反馈快速学习网的热力系统混合预测模型. 热能动力工程. 2018(11): 113-117+137 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  806
  • HTML全文浏览量:  11
  • PDF下载量:  225
  • 被引次数: 6
出版历程
  • 收稿日期:  2016-06-10
  • 修回日期:  2017-06-25
  • 发布日期:  2017-06-08

目录

    /

    返回文章
    返回