CHIO H J,PARK S,KO W,et al. Implementation of AMI in city energy management systems[C]//2017 14th International Multi-conference on Systems,Signals & Devices (SSD),Marrakech,Morocco,2017: 372376.
|
王德生. 世界主要市场智能电表发展前景[EB/OL].(2017524).http://www.istis.sh.cn/list/list.aspx?id=10623.
|
电缆网.201620年中国智能电表安装量将增5.75% [EB/OL].(2016-05-18). http://news. cableabc. com/gc/20160518340614.html.
|
LUO F J,DONG Z Y,CHEN G,et al. Advanced pattern discovery-based fuzzy classification method for power system dynamic security assessment[J]. IEEE Transactions on Industrial Informatics,2015,11(2): 416426.
|
张素香,赵丙镇,王风雨,等. 海量数据下的电力负荷短期预测[J]. 中国电机工程学报,2015,35(1): 3742. ZHANG Suxiang,ZHAO Bingzhen,WANG Fengyu,et al. Short-term power load forecasting based on big data[J]. Proceedings of the CSEE,2015,35 (1): 3742.
|
GRANELL R,AXON C J,WALLOM D C H. Impacts of raw data temporal resolution using selected clustering methods on residential electricity load profiles[J]. IEEE Transactions on Power Systems,2015,30(6): 32173224.
|
李夏林,刘雅娟,朱武.基于配电网的复合电压暂降源分类与识别新方法[J].电力系统保护与控制,2017,45(2):131139. LI Xialin,LIU Yajuan,ZHU Wu. A new method to classify and identify composite voltage sag sources in distribution network[J]. Power System Protection and Control. 2017,45(2):131139.
|
邱海峰,陈兵,袁晓冬,等. 基于动态时间弯曲距离的电压暂降源辨识方法[J]. 电力系统保护与控制,2017,45(13):713. QIU Haifeng,CHEN Bing,YUAN Xiaodong,et al.Identification of voltage sag sources based on DTW[J]. Power System Protection and Control,2017,45(13):713.
|
陈磊磊.不同距离测度的k-means文本聚类研究[J].软件,2015,36(1):5661. CHEN Leilei. Text clustering study with k-means algorithm of different distance measures[J]. Computer Engineering & Software. 2015,36(1):5661.
|
彭显刚,赖家文,陈奕. 基于聚类分析的客户用电模式智能识别方法[J]. 电力系统保护与控制,2014,42(19): 6873. PENG Xiangang,LAI Jiawen,CHEN Yi. Application of clustering analysis in typical power consumption profile analysis[J]. Power System Protection and Control,2014,42(19): 6873.
|
孟建良,刘德超.一种基于Spark和聚类分析的辨识电力系统不良数据新方法[J].电力系统保护与控制,2016,44(3):8591. MENG Jianliang,LIU Dechao. A new method for identifying bad data of power system based on Spark and clustering analysis[J]. Power System Protection and Control. 2016,44(3):8591.
|
高小力,张智博,田启明,等.基于HS-Clustering的风电场机组分组功率预测[J].现代电力,2017,34(3):1218. GAO Xiaoli,ZHANG Zhibo,TIAN Qiming,et al. Wind power forecasting for clustering wind turbines based on HS-clustering[J]. Modern Electric Power. 2017,34(3):1218.
|
李昀昊,王建学,王秀丽. 基于混合聚类分析的电力系统网损评估方法[J]. 电力系统自动化,2016,40(1): 6065. LI Yunhao,WANG Jianxue,WANG Xiuli. A power system network loss evaluation method based on hybrid clustering analysis[J]. Automation of Electric Power Systems. 2016,40(1):6065.
|
田力,向敏.基于密度聚类技术的电力系统用电量异常分析算法[J].电力系统自动化,2017,41(5):6470. TIAN Li,XIANG Min. Abnormal power consumption analysis based on density-based spatial clustering of applications with noise in power systems[J]. Automation of Electric Power Systems. 2017,41(5): 6470.
|
YANG J J,ZHAO J H,WEN F S,et al. A model of customizing electricity retail prices based on load profile clustering analysis[J].IEEE Transactions on Smart Grid.2018,doi: 10.1109/TSG.2018.2825335.
|
WU Z R,DONG X Z,LIU Z W. et al. Power system bad load data detection based on an improved fuzzy c-means clustering algorithm[C]//2017 IEEE Power & Energy Society General Meeting,Chicago,America,2017: 15.
|
WANG K,LI J Z,ZHANG S Q,et al. A hybrid algorithm based on S transform and affinity propagation clustering for separation of two simultaneously artificial partial discharge sources[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2015,22(2): 10421060.
|
成乐祥,季丽. 基于加权k-means聚类和遗传算法的变电站规划[J].江苏电机工程,2016,35(6):912. CHENG Lexiang,JI Li. Substation planning based on weighted k-means cluster algorithm and genetic algorithm[J]. Jiangsu Electrical Engineering. 2016,35(6): 912.
|
刘艳,陈丽安. 基于SOM的真空断路器机械故障诊断[J].电工技术学报,2017,32(5):4954. LIU Yan,CHEN Lian. Mechanical fault diagnosis of vacuum circuit breaker based on SOM[J]. Transactions of China Electrotechnical Society,2017,32(5):4954.
|
NKAYA T,KAYALGIL S,ZDEMIREL N E. Ant colony optimization based clustering methodology[J]. Applied Soft Computing,2015,28: 301311.
|
VARGA E D,BERETKA S F,NOCE C,et al. Robust real-time load profile encoding and classification framework for efficient power systems operation[J]. IEEE Transactions on Power Systems,2015,30(4): 18971904.
|
FIRUZI K,VAKILIAN M,DARABAD V P,et al. A novel method for differentiating and clustering multiple partial discharge sources using S transform and bag of words feature[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2017,24(6):36943702.
|
LIU X F,SHANG L Q. Power system load forecasting by improved principal component analysis and neural network[C]//2016 IEEE International Conference on High Voltage Engineering and Application (ICHVE),Chengdu,China,2016: 14.
|
AL-OTAIBI R,JIN N L,WILCOX T,et al. Feature construction and calibration for clustering daily load curves from smart-meter data[J]. IEEE Transactions on Industrial Informatics,2016,12(2): 645654.
|
YANG Q,HU C Z,ZHENG N G. Data-driven diagnosis of nonlinearly mixed mechanical faults in wind turbine gear box[J]. IEEE Internet of Things Journal,2018,5(1):466467.
|
DING R,WANG Q,DANG Y,et al. Yading: fast clustering of large-scale time series data[J]. Proceedings of the VLDB Endowment,2015,8(5): 473484.
|
沈沉,秦建,盛万兴,等.基于小波聚类的配变短期负荷预测方法研究[J].电网技术,2016,40(2):521526. SHEN Chen,QIN Jian,SHENG Wanxing,et al. Research on short-term load forecasting method of distribution transformer based on wavelet clustering[J]. Power System Technology. 2016,40(2): 521526.
|
祖向荣,田敏,白焰. 基于模糊聚类与函数小波核回归的短期负荷预测方法[J].电力自动化设备,2016,36(10):134140,165. ZU Xiangrong,TIAN Min,BAI Yan. Short-term load forecasting based on fuzzy clustering and functional wavelet-kernel regression[J]. Electric Power Automation Equipment. 2016,36(10):134140,165.
|
PANAPAKIDIS I,ALEXIADIS M,PAPAGIANNIS G. Evaluation of the performance of clustering algorithms for a high voltage industrial consumer[J]. Engineering Applications of Artificial Intelligence,2015,38: 113.
|
MAHMOUDI-KOHAN N,MOGHADDAM M P,BIDAKI S M. Evaluating performance of WFA k-means and modified follow the leader methods for clustering load curves[C]//Power Systems Conference and Exposition,2009. PSCE09. IEEE/PES. IEEE,Seattle,WA,2009: 15.
|
林顺富,谢潮,汤波,等. 数据挖掘在电能质量监测数据分析中的应用[J]. 电测与仪表,2017,54(9):4651. LIN Shunfu,XIE Chao,TANG Bo,et al. The data mining application in the power quality monitoring data analysis[J]. Electrical Measurement & Instrumentation,2017,54(9):4651.
|
ZHANG T F,ZHANG G Q,LU J,et al. A new index and classification approach for load pattern analysis of large electricity customers[J]. IEEE Transactions on Power Systems,2012,27(1):153160.
|
PANAPAKIDIS I P,ALEXIADIS M C,PAPAGIANNIS G K. Deriving the optimal number of clusters in the electricity consumer segmentation procedure[C]//2013 10th International Conference on the European Energy Market (EEM),Stockholm,Sweden,2013: 18.
|
CHICCO G,NAPOLI R,PIGLIONE F. Comparisons among clustering techniques for electricity customer classification[J]. IEEE Transactions on Power Systems,2006,21(2): 933940.
|
KOHAN N M,MOGHADDAM M P,BIDAKI S M,et al. Comparison of modified k-means and hierarchical algorithms in customers load curves clustering for designing suitable tariffs in electricity market[C]//2008 43rd International Universities Power Engineering Conference,Padova,Italy,2008: 15.
|
HUANG X H,YE Y M,XIONG L Y,et al. Time series k-means: A new k-means type smooth subspace clustering for time series data[J]. Information Sciences,2016,367: 113.
|
曾楠,许元斌,罗义旺,等. 基于分布式聚类模型的电力负荷特性分析[J].现代电力,2018,35(1):7177. ZENG Nan,XU Yuanbin,LUO Yiwang,et al. Analysis of power load characteristics based on distributed clustering model[J]. Modern Electric Power. 2018,35(1): 7177.
|
QUILUMBA F L,LEE W J,HUANG H,et al. Using smart meter data to improve the accuracy of intraday load forecasting considering customer behavior similarities [J]. IEEE Transactions on Smart Grid,2015,6(2): 911918.
|
WANG Y,YANG J F. Kernel-based clustering for short-term load forecasting[C]//10th International Conference on Advances in Power System Control,Operation & Management (APSCOM 2015),Hong Kong,China,2015:16.
|
LU Y,ZHANG T K,ZENG Z M,et al. An improved RBF neural network for short-term load forecast in smart grids[C]//2016 IEEE International Conference on Communication Systems (ICCS),Shenzhen,China,2016: 16.
|
程启明,张强,程尹曼,等. 基于密度峰值层次聚类的短期光伏功率预测模型[J].高电压技术,2017,43(4):12141222. CHENG Qiming,ZHANG Qiang,CHENG Yinman,et al. Short-term photovoltaic power prediction model based on hierarchical clustering of density peaks algorithm[J]. High Voltage Engineering. 2017,43(4): 12141222.
|
于秋玲,许长清,李珊,等. 基于模糊聚类和支持向量机的短期光伏功率预测[J].电力系统及其自动化学报,2016,28(12):115118,12. YU Qiuling,XU Changqing,LI Shan,et al. Application of fuzzy clustering algorithm and support vector machine to short-term forecasting of PV power[J]. Proceedings of the CSU-EPSA. 2016,28(12): 115118,12.
|
徐志超,杨玲君,李晓明. 基于聚类改进S变换与直接支持向量机的电能质量扰动识别[J].电力自动化设备,2015,35(7):5058,73. XU Zhichao,YANG Lingjun,LI Xiaoming. Power quality disturbance identification based on clustering-modified S-transform and direct support vector machine[J]. Electric Power Automation Equipment. 2015,35(7):5058,73.
|
韩玉环,赵庆生,郭贺宏,等. 基于FCM的暂态电能质量扰动识别[J]. 电力系统保护与控制,2016,44(9):6268. HAN Yuhuan,ZHAO Qingsheng,GUO Hehong,et al. Identification of transient power quality disturbances based on FCM [J]. Power System Protection and Control,2016,44(9):6268.
|
SEERA M,LIM C P,LOO C K,et al. Power quality analysis using a hybrid model of the fuzzy min-max neural network and clustering tree[J],IEEE Transactions on Neural Networks and Learning Systems,2016,27(12):27602767.
|
鲍永胜,郝峰杰,徐建忠,等. GIS局部放电脉冲分类特征提取算法[J]. 电工技术学报,2016,31(9):181188. BAO Yongsheng,HAO Fengjie,XU Jianzhong,et al. Classification feature extraction algorithm for GIS partial discharge pulses[J]. Transactions of China Electrotechnical Society. 2016,31(9):181188.
|
陈攀,姚陈果,廖瑞金,等.分频段能量谱及马氏聚类算法在开关柜局部放电模式识别中的应用[J].高电压技术,2015,41(10):33323341. CHEN Pan,YAO Chenguo,LIAO Ruijin,et al. Ap- plication of signals separated band energy spectrum and Mahalanobis clustering algorithm for switchgear partial discharge pattern recognition[J]. High Voltage Engineering,2015,41(10):33323341.
|
MAHDI M,GENC I. Defensive islanding using self organizing maps neural networks and hierarchical clustering[C]//2015 IEEE Eindhoven PowerTech,Eindhoven,Netherlands,2015: 15.
|
GHADIMI N. An adaptive neuro-fuzzy inference system for islanding detection in wind turbine as distributed generation[J]. Complexity,2015,21(1): 1020.
|
雷敏,魏务卿,曾进辉,等.考虑需求响应的负荷控制对供电可靠性影响分析[J].电力系统自动化,2018,42(10):5965. LEI Min,WEI Wuqing,ZENG Jinhui,et al. Influence analysis of load control considering demand response on power supply reliability[J]. Automation of Electric Power Systems,2018,42(10):5965.
|
LIN S F,LI F X,TIAN E W,et al. Clustering load profiles for demand response applications[J],IEEE Transactions on Smart Grid,2017,10(2):15991607.
|
陆俊,朱炎平,彭文昊,等. 计及用电行为聚类的智能小区互动化需求响应方法[J]. 电力系统自动化,2017,41(17):113120. LU Jun,ZHU Yanping,PENG Wenhao,et al. An interactive demand response method for intelligent community based on electrical behavior clustering[J]. Automation of Electric Power Systems. 2017,41(17):113120.
|