聚类分析及其在电力系统中的应用综述

李君卫, 汤亚芳, 郝正航, 冒国龙, 姜有泉

李君卫, 汤亚芳, 郝正航, 等. 聚类分析及其在电力系统中的应用综述[J]. 现代电力, 2019, 36(3): 1-10.
引用本文: 李君卫, 汤亚芳, 郝正航, 等. 聚类分析及其在电力系统中的应用综述[J]. 现代电力, 2019, 36(3): 1-10.
LI Junwei, TANG Yafang, HAO Zhenghang, et al. Survey of Cluster Analysis and Its Application in Power System[J]. Modern Electric Power, 2019, 36(3): 1-10.
Citation: LI Junwei, TANG Yafang, HAO Zhenghang, et al. Survey of Cluster Analysis and Its Application in Power System[J]. Modern Electric Power, 2019, 36(3): 1-10.

聚类分析及其在电力系统中的应用综述

基金项目: 国家自然科学基金项目(51467003)
详细信息
    作者简介:

    李君卫(1989-),男,硕士研究生,研究方向为智能配电网的可靠性研究,E-mail:2864976739@qq.com;
    汤亚芳(1976-),女,博士,副教授,研究方向为电力电子在电力系统中的应用,E-mail:1560368@qq.com;
    郝正航(1972-),男,博士,教授,研究方向为风力发电、微电网、柔性直流输电、电力系统稳定分析与控制;
    冒国龙(1991-),男,硕士研究生,研究方向为智能配电网的自愈;
    姜有泉(1989-),男,硕士研究生,研究方向为智能配电网的通信系统。

  • 中图分类号: TM71

Survey of Cluster Analysis and Its Application in Power System

  • 摘要: 随着高级测量体系(AMI)在智能电网中的大量使用,电网产生海量的样本信息数据,使用聚类分析方法可以获得详尽的电力系统运行信息。对电力系统中常用的经典型聚类方法和混合型聚类方法进行了概括,并总结了聚类结果的评价指标;对聚类分析在电力系统的负荷预测、电能质量扰动分析、孤岛检测、局部放电和需求响应等领域的应用现状进行了分析;展望了聚类分析技术在电力系统中的研究与发展前景。
    Abstract: With the extensive use of advanced metering infrastructure(AMI)in the smart grid, the power grid produces massive sample information data, and the detailed information of power system operation can be obtained by clustering analysis. In this paper, the classical clustering and hybrid clustering methods commonly used in power system are generalized, and the evaluation index of clustering results is summarized. Besides, the application of cluster analysis in power system load forecasting, power quality disturbance analysis, islanding detection, partial discharge and demand response are analyzed. Finally, the research and development prospect of cluster analysis technology in power system is forecasted.
  • CHIO H J,PARK S,KO W,et al. Implementation of AMI in city energy management systems[C]//2017 14th International Multi-conference on Systems,Signals & Devices (SSD),Marrakech,Morocco,2017: 372376.
    王德生. 世界主要市场智能电表发展前景[EB/OL].(2017524).http://www.istis.sh.cn/list/list.aspx?id=10623.
    电缆网.201620年中国智能电表安装量将增5.75% [EB/OL].(2016-05-18). http://news. cableabc. com/gc/20160518340614.html.
    LUO F J,DONG Z Y,CHEN G,et al. Advanced pattern discovery-based fuzzy classification method for power system dynamic security assessment[J]. IEEE Transactions on Industrial Informatics,2015,11(2): 416426.
    张素香,赵丙镇,王风雨,等. 海量数据下的电力负荷短期预测[J]. 中国电机工程学报,2015,35(1): 3742.
    ZHANG Suxiang,ZHAO Bingzhen,WANG Fengyu,et al. Short-term power load forecasting based on big data[J]. Proceedings of the CSEE,2015,35 (1): 3742.
    GRANELL R,AXON C J,WALLOM D C H. Impacts of raw data temporal resolution using selected clustering methods on residential electricity load profiles[J]. IEEE Transactions on Power Systems,2015,30(6): 32173224.
    李夏林,刘雅娟,朱武.基于配电网的复合电压暂降源分类与识别新方法[J].电力系统保护与控制,2017,45(2):131139.
    LI Xialin,LIU Yajuan,ZHU Wu. A new method to classify and identify composite voltage sag sources in distribution network[J]. Power System Protection and Control. 2017,45(2):131139.
    邱海峰,陈兵,袁晓冬,等. 基于动态时间弯曲距离的电压暂降源辨识方法[J]. 电力系统保护与控制,2017,45(13):713.
    QIU Haifeng,CHEN Bing,YUAN Xiaodong,et al.Identification of voltage sag sources based on DTW[J]. Power System Protection and Control,2017,45(13):713.
    陈磊磊.不同距离测度的k-means文本聚类研究[J].软件,2015,36(1):5661.
    CHEN Leilei. Text clustering study with k-means algorithm of different distance measures[J]. Computer Engineering & Software. 2015,36(1):5661.
    彭显刚,赖家文,陈奕. 基于聚类分析的客户用电模式智能识别方法[J]. 电力系统保护与控制,2014,42(19): 6873.
    PENG Xiangang,LAI Jiawen,CHEN Yi. Application of clustering analysis in typical power consumption profile analysis[J]. Power System Protection and Control,2014,42(19): 6873.
    孟建良,刘德超.一种基于Spark和聚类分析的辨识电力系统不良数据新方法[J].电力系统保护与控制,2016,44(3):8591.
    MENG Jianliang,LIU Dechao. A new method for identifying bad data of power system based on Spark and clustering analysis[J]. Power System Protection and Control. 2016,44(3):8591.
    高小力,张智博,田启明,等.基于HS-Clustering的风电场机组分组功率预测[J].现代电力,2017,34(3):1218.
    GAO Xiaoli,ZHANG Zhibo,TIAN Qiming,et al. Wind power forecasting for clustering wind turbines based on HS-clustering[J]. Modern Electric Power. 2017,34(3):1218.
    李昀昊,王建学,王秀丽. 基于混合聚类分析的电力系统网损评估方法[J]. 电力系统自动化,2016,40(1): 6065.
    LI Yunhao,WANG Jianxue,WANG Xiuli. A power system network loss evaluation method based on hybrid clustering analysis[J]. Automation of Electric Power Systems. 2016,40(1):6065.
    田力,向敏.基于密度聚类技术的电力系统用电量异常分析算法[J].电力系统自动化,2017,41(5):6470.
    TIAN Li,XIANG Min. Abnormal power consumption analysis based on density-based spatial clustering of applications with noise in power systems[J]. Automation of Electric Power Systems. 2017,41(5): 6470.
    YANG J J,ZHAO J H,WEN F S,et al. A model of customizing electricity retail prices based on load profile clustering analysis[J].IEEE Transactions on Smart Grid.2018,doi: 10.1109/TSG.2018.2825335.
    WU Z R,DONG X Z,LIU Z W. et al. Power system bad load data detection based on an improved fuzzy c-means clustering algorithm[C]//2017 IEEE Power & Energy Society General Meeting,Chicago,America,2017: 15.
    WANG K,LI J Z,ZHANG S Q,et al. A hybrid algorithm based on S transform and affinity propagation clustering for separation of two simultaneously artificial partial discharge sources[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2015,22(2): 10421060.
    成乐祥,季丽. 基于加权k-means聚类和遗传算法的变电站规划[J].江苏电机工程,2016,35(6):912.
    CHENG Lexiang,JI Li. Substation planning based on weighted k-means cluster algorithm and genetic algorithm[J]. Jiangsu Electrical Engineering. 2016,35(6): 912.
    刘艳,陈丽安. 基于SOM的真空断路器机械故障诊断[J].电工技术学报,2017,32(5):4954.
    LIU Yan,CHEN Lian. Mechanical fault diagnosis of vacuum circuit breaker based on SOM[J]. Transactions of China Electrotechnical Society,2017,32(5):4954.
    NKAYA T,KAYALGIL S,ZDEMIREL N E. Ant colony optimization based clustering methodology[J]. Applied Soft Computing,2015,28: 301311.
    VARGA E D,BERETKA S F,NOCE C,et al. Robust real-time load profile encoding and classification framework for efficient power systems operation[J]. IEEE Transactions on Power Systems,2015,30(4): 18971904.
    FIRUZI K,VAKILIAN M,DARABAD V P,et al. A novel method for differentiating and clustering multiple partial discharge sources using S transform and bag of words feature[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2017,24(6):36943702.
    LIU X F,SHANG L Q. Power system load forecasting by improved principal component analysis and neural network[C]//2016 IEEE International Conference on High Voltage Engineering and Application (ICHVE),Chengdu,China,2016: 14.
    AL-OTAIBI R,JIN N L,WILCOX T,et al. Feature construction and calibration for clustering daily load curves from smart-meter data[J]. IEEE Transactions on Industrial Informatics,2016,12(2): 645654.
    YANG Q,HU C Z,ZHENG N G. Data-driven diagnosis of nonlinearly mixed mechanical faults in wind turbine gear box[J]. IEEE Internet of Things Journal,2018,5(1):466467.
    DING R,WANG Q,DANG Y,et al. Yading: fast clustering of large-scale time series data[J]. Proceedings of the VLDB Endowment,2015,8(5): 473484.
    沈沉,秦建,盛万兴,等.基于小波聚类的配变短期负荷预测方法研究[J].电网技术,2016,40(2):521526.
    SHEN Chen,QIN Jian,SHENG Wanxing,et al. Research on short-term load forecasting method of distribution transformer based on wavelet clustering[J]. Power System Technology. 2016,40(2): 521526.
    祖向荣,田敏,白焰. 基于模糊聚类与函数小波核回归的短期负荷预测方法[J].电力自动化设备,2016,36(10):134140,165.
    ZU Xiangrong,TIAN Min,BAI Yan. Short-term load forecasting based on fuzzy clustering and functional wavelet-kernel regression[J]. Electric Power Automation Equipment. 2016,36(10):134140,165.
    PANAPAKIDIS I,ALEXIADIS M,PAPAGIANNIS G. Evaluation of the performance of clustering algorithms for a high voltage industrial consumer[J]. Engineering Applications of Artificial Intelligence,2015,38: 113.
    MAHMOUDI-KOHAN N,MOGHADDAM M P,BIDAKI S M. Evaluating performance of WFA k-means and modified follow the leader methods for clustering load curves[C]//Power Systems Conference and Exposition,2009. PSCE09. IEEE/PES. IEEE,Seattle,WA,2009: 15.
    林顺富,谢潮,汤波,等. 数据挖掘在电能质量监测数据分析中的应用[J]. 电测与仪表,2017,54(9):4651.
    LIN Shunfu,XIE Chao,TANG Bo,et al. The data mining application in the power quality monitoring data analysis[J]. Electrical Measurement & Instrumentation,2017,54(9):4651.
    ZHANG T F,ZHANG G Q,LU J,et al. A new index and classification approach for load pattern analysis of large electricity customers[J]. IEEE Transactions on Power Systems,2012,27(1):153160.
    PANAPAKIDIS I P,ALEXIADIS M C,PAPAGIANNIS G K. Deriving the optimal number of clusters in the electricity consumer segmentation procedure[C]//2013 10th International Conference on the European Energy Market (EEM),Stockholm,Sweden,2013: 18.
    CHICCO G,NAPOLI R,PIGLIONE F. Comparisons among clustering techniques for electricity customer classification[J]. IEEE Transactions on Power Systems,2006,21(2): 933940.
    KOHAN N M,MOGHADDAM M P,BIDAKI S M,et al. Comparison of modified k-means and hierarchical algorithms in customers load curves clustering for designing suitable tariffs in electricity market[C]//2008 43rd International Universities Power Engineering Conference,Padova,Italy,2008: 15.
    HUANG X H,YE Y M,XIONG L Y,et al. Time series k-means: A new k-means type smooth subspace clustering for time series data[J]. Information Sciences,2016,367: 113.
    曾楠,许元斌,罗义旺,等. 基于分布式聚类模型的电力负荷特性分析[J].现代电力,2018,35(1):7177.
    ZENG Nan,XU Yuanbin,LUO Yiwang,et al. Analysis of power load characteristics based on distributed clustering model[J]. Modern Electric Power. 2018,35(1): 7177.
    QUILUMBA F L,LEE W J,HUANG H,et al. Using smart meter data to improve the accuracy of intraday load forecasting considering customer behavior similarities [J]. IEEE Transactions on Smart Grid,2015,6(2): 911918.
    WANG Y,YANG J F. Kernel-based clustering for short-term load forecasting[C]//10th International Conference on Advances in Power System Control,Operation & Management (APSCOM 2015),Hong Kong,China,2015:16.
    LU Y,ZHANG T K,ZENG Z M,et al. An improved RBF neural network for short-term load forecast in smart grids[C]//2016 IEEE International Conference on Communication Systems (ICCS),Shenzhen,China,2016: 16.
    程启明,张强,程尹曼,等. 基于密度峰值层次聚类的短期光伏功率预测模型[J].高电压技术,2017,43(4):12141222.
    CHENG Qiming,ZHANG Qiang,CHENG Yinman,et al. Short-term photovoltaic power prediction model based on hierarchical clustering of density peaks algorithm[J]. High Voltage Engineering. 2017,43(4): 12141222.
    于秋玲,许长清,李珊,等. 基于模糊聚类和支持向量机的短期光伏功率预测[J].电力系统及其自动化学报,2016,28(12):115118,12.
    YU Qiuling,XU Changqing,LI Shan,et al. Application of fuzzy clustering algorithm and support vector machine to short-term forecasting of PV power[J]. Proceedings of the CSU-EPSA. 2016,28(12): 115118,12.
    徐志超,杨玲君,李晓明. 基于聚类改进S变换与直接支持向量机的电能质量扰动识别[J].电力自动化设备,2015,35(7):5058,73.
    XU Zhichao,YANG Lingjun,LI Xiaoming. Power quality disturbance identification based on clustering-modified S-transform and direct support vector machine[J]. Electric Power Automation Equipment. 2015,35(7):5058,73.
    韩玉环,赵庆生,郭贺宏,等. 基于FCM的暂态电能质量扰动识别[J]. 电力系统保护与控制,2016,44(9):6268.
    HAN Yuhuan,ZHAO Qingsheng,GUO Hehong,et al. Identification of transient power quality disturbances based on FCM [J]. Power System Protection and Control,2016,44(9):6268.
    SEERA M,LIM C P,LOO C K,et al. Power quality analysis using a hybrid model of the fuzzy min-max neural network and clustering tree[J],IEEE Transactions on Neural Networks and Learning Systems,2016,27(12):27602767.
    鲍永胜,郝峰杰,徐建忠,等. GIS局部放电脉冲分类特征提取算法[J]. 电工技术学报,2016,31(9):181188.
    BAO Yongsheng,HAO Fengjie,XU Jianzhong,et al. Classification feature extraction algorithm for GIS partial discharge pulses[J]. Transactions of China Electrotechnical Society. 2016,31(9):181188.
    陈攀,姚陈果,廖瑞金,等.分频段能量谱及马氏聚类算法在开关柜局部放电模式识别中的应用[J].高电压技术,2015,41(10):33323341.
    CHEN Pan,YAO Chenguo,LIAO Ruijin,et al. Ap-
    plication of signals separated band energy spectrum and Mahalanobis clustering algorithm for switchgear partial discharge pattern recognition[J]. High Voltage Engineering,2015,41(10):33323341.
    MAHDI M,GENC I. Defensive islanding using self organizing maps neural networks and hierarchical clustering[C]//2015 IEEE Eindhoven PowerTech,Eindhoven,Netherlands,2015: 15.
    GHADIMI N. An adaptive neuro-fuzzy inference system for islanding detection in wind turbine as distributed generation[J]. Complexity,2015,21(1): 1020.
    雷敏,魏务卿,曾进辉,等.考虑需求响应的负荷控制对供电可靠性影响分析[J].电力系统自动化,2018,42(10):5965.
    LEI Min,WEI Wuqing,ZENG Jinhui,et al. Influence analysis of load control considering demand response on power supply reliability[J]. Automation of Electric Power Systems,2018,42(10):5965.
    LIN S F,LI F X,TIAN E W,et al. Clustering load profiles for demand response applications[J],IEEE Transactions on Smart Grid,2017,10(2):15991607.
    陆俊,朱炎平,彭文昊,等. 计及用电行为聚类的智能小区互动化需求响应方法[J]. 电力系统自动化,2017,41(17):113120.
    LU Jun,ZHU Yanping,PENG Wenhao,et al. An interactive demand response method for intelligent community based on electrical behavior clustering[J]. Automation of Electric Power Systems. 2017,41(17):113120.


  • 期刊类型引用(17)

    1. 陈子健. 基于聚类分析优化算法的数据快速挖掘与智能筛选. 粘接. 2024(01): 189-192 . 百度学术
    2. 杨用春,杨林. 基于改进PFCM算法的多重耦合电能质量扰动识别分析. 电力科学与工程. 2024(08): 1-9 . 百度学术
    3. 李前岗,杨毅,王锡,徐宝萍. 数据驱动的校园生活热水系统负荷预测及需求侧响应柔性潜能分析. 暖通空调. 2024(09): 71-81 . 百度学术
    4. 黄庆祥,李家桐,田筝,陈彬,张巧霞. 基于数据挖掘方法的新型电力系统中可中断负荷合同模型研究. 智慧电力. 2023(02): 24-29+68 . 百度学术
    5. 董冰冰,高常胜,许渊,崔其会,胡洁,周迎超. 基于修正时频聚类分界的GIS设备特高频偶发局放识别算法. 高电压技术. 2023(11): 4736-4746 . 百度学术
    6. 韦恒,黄超,杨彦,田君杨,覃丙川. 基于数据挖掘技术的电网设备参数风险识别方法研究. 自动化技术与应用. 2022(02): 47-50+97 . 百度学术
    7. 李向群,伍亚萍,庄旭菲,吉飞敏,张燕. 结合广义S变换和快速独立分量分析的局放信号中窄带干扰抑制方法. 现代电力. 2022(05): 597-604 . 本站查看
    8. 陈蓉. 基于IK-MD-SA聚类算法的电力数据审计疑点研究. 价值工程. 2022(01): 174-176 . 百度学术
    9. 魏勇,李学军,李万伟,刘嘉明,王喻玺,李正辉,王飞. 基于空间密度聚类和K-shape算法的城市综合体负荷模式聚类方法. 电力系统保护与控制. 2021(14): 37-44 . 百度学术
    10. 施文幸,曹诗韵. 基于萤火虫K-means聚类的电力用户画像构建和应用. 计算机系统应用. 2021(08): 281-287 . 百度学术
    11. 武晨晨,苗霁,祝佳楠,张文惠. 遗传算法优化BP神经网络的电能质量预测预警研究. 电工电气. 2021(09): 18-22 . 百度学术
    12. 张威,刘影,刘岩,彭鑫霞. 基于K-means的智能电能表负荷测量估算. 电测与仪表. 2021(10): 185-192 . 百度学术
    13. 臧玉魏,谢连科,张永,张国英,吴健,白晓春. 基于电力营销聚类分析的数据挖掘算法研究. 信息技术. 2020(04): 56-59+64 . 百度学术
    14. 高建东,沈捷,吴星昂,王业凡,吴晶莹. 基于近邻传播算法的电网峰值柔性负荷分析. 信息技术. 2020(06): 149-153 . 百度学术
    15. 袁心怡,钱峰. 基于网格偏移的低压电力供应链蜂巢模型构建. 电子设计工程. 2020(19): 58-61+66 . 百度学术
    16. 卢耀勤,刘继文. 数据挖掘在职业卫生领域的研究现状. 中国职业医学. 2019(02): 243-246 . 百度学术
    17. 金之榆,王毛毛,史会磊. 基于DBSCAN和改进K-means聚类算法的电力负荷聚类研究. 东北电力技术. 2019(06): 10-14 . 百度学术

    其他类型引用(30)

计量
  • 文章访问数:  665
  • HTML全文浏览量:  59
  • PDF下载量:  119
  • 被引次数: 47
出版历程
  • 收稿日期:  2018-01-12
  • 发布日期:  2019-06-08

目录

    /

    返回文章
    返回