胡泽春,宋永华,徐智威,等. 电动汽车接入电网的影响与利用[J]. 中国电机工程学报, 2012, 32(4):110. HU Zechun,SONG Yonghua,XU Zhiwei,et al. Impacts and utilization of electric vehicles integration into power systems[J]. Proceedings of the CSEE,2012,32(4):110.
|
FATHABADI H. Novel wind powered electric vehicle charg- ing station with vehicle-to-grid (V2G) connection capa- bility[J]. Energy Conversion & Management,2017, 136:229239.
|
HUANG Xiaoqing,CHEN Jie,CHEN Yongxin,et al. Load forecasting method for electric vehicle charging station based on big data[J]. Automation of Electric Power Systems,2016,40(12):6874.
|
杨波,陈卫,文明浩,等. 电动汽车充电站的概率负荷建模[J]. 电力系统自动化,2014,38(16):6773. YANG Bo,CHEN Wei,WENG Minghao,et al. Probabilistic load modeling of electric vehicle charging stations[J]. Automation of Electric Power Systems,2014, 38(16):6773.
|
张维戈,颉飞翔,黄梅,等. 快换式公交充电站短期负荷预测方法的研究[J]. 电力系统保护与控制, 2013(4):6166. ZHANG Weige,YAN Feixiang,HUANG Mei,et al. Research on short-term load forecasting methods of electric buses charging station[J]. Power System Protec- tion and Control, 2013(4):61 66.
|
王哲,代兵琪,李相栋. 基于PSO-SNN的电动汽车充电站短期负荷预测模型研究[J]. 电气技术,2016, 17(1):4650. WANG Zhe,DAI Bingqi,LI Xiangdong. Research on Short-term load forecasting model of electric vehicle charging station based on PSO-SNN[J]. Electrical Tech- nology,2016,17(1):4650.
|
常德政,任杰,赵建伟,等. 基于RBF-NN的电动汽车充电站短期负荷预测研究[J]. 青岛大学学报(工程技术版),2014,29(4):4448. CHANG Dezheng,REN Jie,ZHAO Jianwei,et al. Research of short-term load forecasting model for electri -cal vehicle charging stations based on RBF-NN[J]. Journal of Qingdao University(Engineering Technology Edition),2014,29(4):4448.
|
黄小庆,陈颉,陈永新,等. 大数据背景下的充电站负荷预测方法[J]. 电力系统自动化,2016, 40(12):6874. HUANG Xiaoqing, CHEN Hao, CHEN Yongxin, et al.Load forecasting method for electric vehicle charging station based on big data[J]. Automation of Electric Power Systems,2016,40(12):6874.
|
LIU F,XU F,YANG S . A flood forecasting model bas -ed on deep learning algorithm via integrating stacked autoencoders with BP neural network[C]// 2017 IEEE Third International Conference on Multimedia Big Data (BigMM). IEEE,2017.
|
徐逸之,彭玲,林晖,等. 基于栈式自编码的上海地铁短时流量预测[J]. 计算机工程与科学,2018, 40(7):133138. XU Yizhi,PENG Ling,LIN Hui,et al.Short-term passenger flow prediction in Shanghai subway system based on stacked autoencoder[J]. Computer Engineering and Science,2018,40(7):133138.
|
CAO T X,LIU S M,WANG Z J,et al. A hybrid model for wind power short-term forecasting based on EEMD and coupling SAE-BP[J]. Electrical Measurement & Instrumentation,2018,55(13):8488.
|
史峰. MATLAB 智能算法-30个案例分析[M]. 北京:航空航天大学出版社,2011.
|
贾龙,胡泽春,宋永华,等. 储能和电动汽车充电站与配电网的联合规划研究[J]. 中国电机工程学报, 2017, 37(1):7383. JIA Long,HU Zechun,SONG Yonghua,et al. Joint planning research on energy storage and electric vehicle charging station and distribution network [J]. Proceedings of the CSEE,2017,37(1):7383.
|
张成刚,姜静清. 一种稀疏降噪自编码神经网络研究[J]. 内蒙古民族大学学报(自然汉文版),2016, 31(1):2125. ZHANG Chenggang, JIANG Jingqing. Study on sparse de-noising auto-encoder neural network[J]. Journal of Inner Mongolia University for Nationalities (Natural Chinese Edition),2016,31(1):2125.
|
WANG L,YOU Z H,CHEN X,et al. A Computational-based method for predicting drug-target interactions by using stacked autoencoder deep neural network[J]. Journal of Computational Biology A Journal of Computational Molecular Cell Biology, 2017, 25(3):361373.
|
牛玉虎. 卷积稀疏自编码神经网络[J]. 计算机与现代化,2017(2):2229. NIU Yuhu. Convolutional sparse autoencoder neural networks[J]. Computer and Modernization,2017 (2):2229.
|
寇茜茜,何希平. 基于栈式自编码器模型的汇率时间序列预测[J]. 计算机应用与软件,2017,34(3):218221. KOU Qianqian,HE Xiping. Exchange rate time series prediction based on stacked autoencoder model[J]. Computer Applications and Software,2017,34(3):218221.
|
贾文娟,张煜东. 自编码器理论与方法综述[J]. 计算机系统应用,2018,27(5):19. JIA Wenjuan,ZHANG Yudong. Survey on theories and methods of auto encoder[J]. Computer Systems & Applications,2018,27(5):19.
|
林嘉宇,刘荧. RBF神经网络的梯度下降训练方法中的学习步长优化[J]. 信号处理,2002,18(1):4348. LIN Jiayu,LIU Ying. Learning rate refining for gradient descent method of RBF neural networks[J]. Signal Processing,2002,18(1):4348.
|
HUANG G B,ZHU Q Y,SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006,70(1):489501.
|
王保义,赵硕, 张少敏.基于云计算和极限学习机的分布式电力负荷预测算法[J]. 电网技术,2014,38(2): 526531. WANG Baoyi,ZHAO Shuo,ZHANG Shaomin. A distributed load forecasting algorithm based on cloud computing and extreme learning machine[J]. Power System Technology,2014,38(2):526531.
|