基于SAE-ELM的电动汽车充电站负荷预测模型

龚钢军, 安晓楠, 陈志敏, 张帅, 文亚凤, 吴秋新, 苏畅

龚钢军, 安晓楠, 陈志敏, 等. 基于SAE-ELM的电动汽车充电站负荷预测模型[J]. 现代电力, 2019, 36(6): 9-15.
引用本文: 龚钢军, 安晓楠, 陈志敏, 等. 基于SAE-ELM的电动汽车充电站负荷预测模型[J]. 现代电力, 2019, 36(6): 9-15.
GONG Gangjun, AN Xiaonan, CHEN Zhimin, et al. Model of Load Forecasting of Electric Vehicle Charging Station Based on SAE-ELM[J]. Modern Electric Power, 2019, 36(6): 9-15.
Citation: GONG Gangjun, AN Xiaonan, CHEN Zhimin, et al. Model of Load Forecasting of Electric Vehicle Charging Station Based on SAE-ELM[J]. Modern Electric Power, 2019, 36(6): 9-15.

基于SAE-ELM的电动汽车充电站负荷预测模型

基金项目: 国家863计划课题(2015AA050203)
详细信息
    作者简介:

    龚钢军(1974—),男,博士,副教授,研究方向为人工智能、能源电力信息安全、主动配电网,E-mail:gong@ncepu.edu.cn;安晓楠(1993—),女,硕士研究生,研究方向为电力负荷预测、电力系统通信与安全,E-mail:13120425789@163.com。

  • 中图分类号: TM715

Model of Load Forecasting of Electric Vehicle Charging Station Based on SAE-ELM

  • 摘要: 电动汽车(electric vehicle,EV)用户充电行为在时间和空间上的随机性增加了EV充电站负荷预测的难度,为此以提高负荷预测的准确度为目的,通过改进深度学习中的栈式自编码器提出栈式自编码器-极限学习机(SAE-ELM)的混合模型,并深入研究EV与电网的交互模式;综合考虑影响充电站负荷量的关键因素,如历史负荷、环境、日类型等,对某地充电站进行短期负荷预测并验证;最后与SAE-BP、ELM算法做对比实验,实验结果表明SAE-ELM对充电站的短期负荷预测更加有效准确,更有利于电网稳定运行。
    Abstract: The randomness of charging behavior in time and space increases the difficulty of load forecasting of EV charging station. In this paper, the stacked auto encoder neural network-extreme learning machine (SAE-ELM) hybrid model is proposed by improving the stack auto encoder of deep-learning to realize short-term load forecasting of charging stations. The interactive mode of electric vehicle and power grid is introduced and the key factors affecting the charging station load, such as historical load, environment, typical day type, etc., are also considered. Finally, the short-term load forecasting of a practical charging station is realized and compared with SAE-BP and ELM algorithm. The result shows the proposed approach can provide more accurate forecasting result, which benefits the stable operation of power grid.
  • 胡泽春,宋永华,徐智威,等. 电动汽车接入电网的影响与利用[J]. 中国电机工程学报, 2012, 32(4):110.
    HU Zechun,SONG Yonghua,XU Zhiwei,et al. Impacts and utilization of electric vehicles integration into power systems[J]. Proceedings of the CSEE,2012,32(4):110.
    FATHABADI H. Novel wind powered electric vehicle charg- ing station with vehicle-to-grid (V2G) connection capa- bility[J]. Energy Conversion & Management,2017, 136:229239.
    HUANG Xiaoqing,CHEN Jie,CHEN Yongxin,et al. Load forecasting method for electric vehicle charging station based on big data[J]. Automation of Electric Power Systems,2016,40(12):6874.
    杨波,陈卫,文明浩,等. 电动汽车充电站的概率负荷建模[J]. 电力系统自动化,2014,38(16):6773.
    YANG Bo,CHEN Wei,WENG Minghao,et al. Probabilistic load modeling of electric vehicle charging stations[J]. Automation of Electric Power Systems,2014, 38(16):6773.
    张维戈,颉飞翔,黄梅,等. 快换式公交充电站短期负荷预测方法的研究[J]. 电力系统保护与控制, 2013(4):6166.
    ZHANG Weige,YAN Feixiang,HUANG Mei,et al. Research on short-term load forecasting methods of electric buses charging station[J]. Power System Protec- tion and Control, 2013(4):61 66.
    王哲,代兵琪,李相栋. 基于PSO-SNN的电动汽车充电站短期负荷预测模型研究[J]. 电气技术,2016, 17(1):4650.
    WANG Zhe,DAI Bingqi,LI Xiangdong. Research on Short-term load forecasting model of electric vehicle charging station based on PSO-SNN[J]. Electrical Tech- nology,2016,17(1):4650.
    常德政,任杰,赵建伟,等. 基于RBF-NN的电动汽车充电站短期负荷预测研究[J]. 青岛大学学报(工程技术版),2014,29(4):4448.
    CHANG Dezheng,REN Jie,ZHAO Jianwei,et al. Research of short-term load forecasting model for electri -cal vehicle charging stations based on RBF-NN[J]. Journal of Qingdao University(Engineering Technology Edition),2014,29(4):4448.
    黄小庆,陈颉,陈永新,等. 大数据背景下的充电站负荷预测方法[J]. 电力系统自动化,2016, 40(12):6874.
    HUANG Xiaoqing, CHEN Hao, CHEN Yongxin, et al.Load forecasting method for electric vehicle charging station based on big data[J]. Automation of Electric Power Systems,2016,40(12):6874.
    LIU F,XU F,YANG S . A flood forecasting model bas -ed on deep learning algorithm via integrating stacked autoencoders with BP neural network[C]// 2017 IEEE Third International Conference on Multimedia Big Data (BigMM). IEEE,2017.
    徐逸之,彭玲,林晖,等. 基于栈式自编码的上海地铁短时流量预测[J]. 计算机工程与科学,2018, 40(7):133138.
    XU Yizhi,PENG Ling,LIN Hui,et al.Short-term passenger flow prediction in Shanghai subway system based on stacked autoencoder[J]. Computer Engineering and Science,2018,40(7):133138.
    CAO T X,LIU S M,WANG Z J,et al. A hybrid model for wind power short-term forecasting based on EEMD and coupling SAE-BP[J]. Electrical Measurement & Instrumentation,2018,55(13):8488.
    史峰. MATLAB 智能算法-30个案例分析[M]. 北京:航空航天大学出版社,2011.
    贾龙,胡泽春,宋永华,等. 储能和电动汽车充电站与配电网的联合规划研究[J]. 中国电机工程学报, 2017, 37(1):7383.
    JIA Long,HU Zechun,SONG Yonghua,et al. Joint planning research on energy storage and electric vehicle charging station and distribution network [J]. Proceedings of the CSEE,2017,37(1):7383.
    张成刚,姜静清. 一种稀疏降噪自编码神经网络研究[J]. 内蒙古民族大学学报(自然汉文版),2016, 31(1):2125.
    ZHANG Chenggang, JIANG Jingqing. Study on sparse de-noising auto-encoder neural network[J]. Journal of Inner Mongolia University for Nationalities (Natural Chinese Edition),2016,31(1):2125.
    WANG L,YOU Z H,CHEN X,et al. A Computational-based method for predicting drug-target interactions by using stacked autoencoder deep neural network[J]. Journal of Computational Biology A Journal of Computational Molecular Cell Biology, 2017, 25(3):361373.
    牛玉虎. 卷积稀疏自编码神经网络[J]. 计算机与现代化,2017(2):2229.
    NIU Yuhu. Convolutional sparse autoencoder neural networks[J]. Computer and Modernization,2017 (2):2229.
    寇茜茜,何希平. 基于栈式自编码器模型的汇率时间序列预测[J]. 计算机应用与软件,2017,34(3):218221.
    KOU Qianqian,HE Xiping. Exchange rate time series prediction based on stacked autoencoder model[J]. Computer Applications and Software,2017,34(3):218221.
    贾文娟,张煜东. 自编码器理论与方法综述[J]. 计算机系统应用,2018,27(5):19.
    JIA Wenjuan,ZHANG Yudong. Survey on theories and methods of auto encoder[J]. Computer Systems & Applications,2018,27(5):19.
    林嘉宇,刘荧. RBF神经网络的梯度下降训练方法中的学习步长优化[J]. 信号处理,2002,18(1):4348.
    LIN Jiayu,LIU Ying. Learning rate refining for gradient descent method of RBF neural networks[J]. Signal Processing,2002,18(1):4348.
    HUANG G B,ZHU Q Y,SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006,70(1):489501.
    王保义,赵硕, 张少敏.基于云计算和极限学习机的分布式电力负荷预测算法[J]. 电网技术,2014,38(2): 526531.
    WANG Baoyi,ZHAO Shuo,ZHANG Shaomin. A distributed load forecasting algorithm based on cloud computing and extreme learning machine[J]. Power System Technology,2014,38(2):526531.
  • 期刊类型引用(12)

    1. 黄健,陈建红,何剑杰,吴燕,万修,陈凡. 基于GCN-LSTM的电动汽车负荷预测方法. 浙江电力. 2024(12): 59-67 . 百度学术
    2. 王宁,陈宇,李波. 基于图时空神经网络的多充电站负荷协同预测方法. 汽车工程学报. 2023(05): 760-772 . 百度学术
    3. 蔡新雷,董锴,崔艳林,祝锦舟,陆文韬,余洋. 基于马尔科夫链理论的电动汽车集群充电负荷建模及可调能力评估. 南方电网技术. 2023(09): 29-37 . 百度学术
    4. 王喜泉,何山,王维庆,孔令清,陈伟. 基于激光测风雷达及SSA-ELM的风电场短期风速预测. 电网与清洁能源. 2022(05): 120-128 . 百度学术
    5. 刘勇,李全优,戴朝华. 电动汽车充电负荷时空分布建模研究综述. 电测与仪表. 2022(08): 1-9 . 百度学术
    6. 庞传军,张波,余建明. 基于LSTM循环神经网络的短期电力负荷预测. 电力工程技术. 2021(01): 175-180+194 . 百度学术
    7. 杨校辉,邱俊宏,张娟,尹新涛,王艳. 一种基于综合能源优化调配的充电站运营管理系统研究. 电力系统保护与控制. 2021(05): 173-179 . 百度学术
    8. 黄炜,陈田,吴入军. 基于门控循环单元与误差修正的短期负荷预测. 浙江大学学报(工学版). 2021(09): 1625-1633 . 百度学术
    9. 金允泰,郑建立,周武能. 基于GLW和SAE的公路交通流预测. 电脑与信息技术. 2021(06): 8-11 . 百度学术
    10. 曹娜,牛恩荃,于群,王琪. 考虑城市多场景和用户充电意愿的私家电动汽车充电负荷预测. 电测与仪表. 2020(21): 84-91+110 . 百度学术
    11. 赵冬梅,王闯,马泰屹. 基于改进堆栈自编码器的变压器故障诊断模型. 华北电力大学学报(自然科学版). 2020(06): 61-67 . 百度学术
    12. 赵晋泉,夏雪,徐春雷,胡伟,尚学伟. 新一代人工智能技术在电力系统调度运行中的应用评述. 电力系统自动化. 2020(24): 1-10 . 百度学术

    其他类型引用(12)

计量
  • 文章访问数:  537
  • HTML全文浏览量:  70
  • PDF下载量:  56
  • 被引次数: 24
出版历程
  • 收稿日期:  2018-11-17
  • 发布日期:  2019-12-08

目录

    /

    返回文章
    返回