张荣伟, 唐晓杰, 李龙, 徐晓东, 洪洲, 张雪, 吕干云. 融合主成分含噪密度聚类与综合关联分析的混合非侵入式负荷辨识方法[J]. 现代电力. DOI: 10.19725/j.cnki.1007-2322.2023.0152
引用本文: 张荣伟, 唐晓杰, 李龙, 徐晓东, 洪洲, 张雪, 吕干云. 融合主成分含噪密度聚类与综合关联分析的混合非侵入式负荷辨识方法[J]. 现代电力. DOI: 10.19725/j.cnki.1007-2322.2023.0152
ZHANG Rongwei, TANG Xiaojie, LI Long, XU Xiaodong, HONG Zhou, ZHANG Xue, LÜ Ganyun. Hybrid Noninvasive Load Identification with Combining PCA-DBSCAN Clustering and Comprehensive Correlation Analysis[J]. Modern Electric Power. DOI: 10.19725/j.cnki.1007-2322.2023.0152
Citation: ZHANG Rongwei, TANG Xiaojie, LI Long, XU Xiaodong, HONG Zhou, ZHANG Xue, LÜ Ganyun. Hybrid Noninvasive Load Identification with Combining PCA-DBSCAN Clustering and Comprehensive Correlation Analysis[J]. Modern Electric Power. DOI: 10.19725/j.cnki.1007-2322.2023.0152

融合主成分含噪密度聚类与综合关联分析的混合非侵入式负荷辨识方法

Hybrid Noninvasive Load Identification with Combining PCA-DBSCAN Clustering and Comprehensive Correlation Analysis

  • 摘要: 为提高电力负荷监控的准确性,研究了融合主成分含噪密度聚类与主成分分析(density-based spatial clustering of applications with noise with principal component analysis,PCA-DBSCAN)的混合非侵入式负荷辨识方法。首先,针对原始负荷特征维度较高的问题,采用PCA算法对原始特征数据降维,构建负荷特征模板库,同时,获取负荷电流波形,构建负荷电流模板库。其次,采用DBSCAN聚类算法对负荷特征模板库内的样本进行非监督聚类,提取各聚类簇中心。然后,计算待辨识负荷与各特征模板库聚类中心的欧式距离,完成负荷特征匹配,并计算待辨识负荷的电流波形与电流模板库内各电流波形的综合关联度,完成负荷电流波形匹配。最后,混合两次匹配结果,综合判断待辨识负荷,从而实现高可靠辨识。以用电数据测试数据集仿真实验的结果显示,所提方法的各项指标达到96%以上。

     

    Abstract: To improve the accuracy of power load monitoring, A hybrid nonintrusive load identification method based on density-based spatial clustering of applications with noise with principal component analysis (abbr. PCA- DBSCAN) was proposed. Firstly, in allusion to the problem of high dimensionality of the original load features, the PCA algorithm was used to reduce the dimensionality of the original feature data to construct a load feature template library, simultaneously, the load current waveform was obtained to construct the load current template library. Secondly, the DBSCAN clustering algorithm was used to unsupervised cluster the samples in the load feature template library to extract the centers of each cluster. Thirdly, the Euclidean distance between the load to be identified and the clustering centers of each feature template library was calculated for load feature matching; and the comprehensive correlation degree between the current waveform of the load to be identified and each of that in the current waveform template library was calculated for realizing load current waveform matching. Finally, by mixing the two matching results, load identification was taken synthetically for realizing high reliable identification. The simulation results of a testing dataset with electricity consumption data show that the indexes of the proposed method are over 96%.

     

/

返回文章
返回