[1]
|
2014年中国风电装机容量统计.中国风能协会. |
[2]
|
刘永前,韩爽,胡永生. 风电场出力短期预报研究综述[J]. 现代电力, 2007(5):611. |
[3]
|
牛东晓,范磊磊. 风电功率预测方法综述及发展研究[J]. 现代电力, 2013(4): 2428. |
[4]
|
Mabel M C,Fernandez E. Analysis of wind power generation and prediction using ANN: a case study [J]. Renewable Energy, 2008, 33(5): 986992. |
[5]
|
Cadenas E, Rivera W. Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks [J]. Renewable Energy, 2009, 34 (1): 274278. |
[6]
|
Tu Y L, Chang T J,Chen C L, et al. Estimation of monthly wind power outputs of WECS with limited record period using articial neural networks [J]. Energy Conversion and Management, 2012, 59: 114121. |
[7]
|
Rasit Ata. Arti cial neural networks applications in wind energy systems: a review [J]. Renewable and Sustainable Energy Reviews, 2015, 49: 534562. |
[8]
|
Bremnes J B. Probabilistic wind power forecasts using local quantile regression [J]. Wind Energy, 2004, 7(1): 4754. |
[9]
|
阎洁,刘永前,韩爽. 基于分位数回归方法的风电功率预测不确定性分析[J]. 太阳能学报, 2013, 34(12): 21012107. |
[10]
|
Haque A U, Nehrir M H, Mandal P. A Hybrid Intelligent Model for Deterministic and Quantile Regression Approach for Probabilistic Wind Power Forecasting [J]. IEEE Transactions on Power Systems, 2014, 29(4): 16631672. |
[11]
|
Bessa R, Miranda V, Botterud A, et al. Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting [J]. IEEE Transactions on Sustainable Energy, 2012, 3(4): 660669. |
[12]
|
Taylora J W, Jeonb J. Forecasting wind power quantiles using conditional kernel estimation [J]. Renewable Energy, Aug. 2015, 80: 370379. |
[13]
|
Wang J, Botterud A,Bessa R, et al. Wind power forecasting uncertainty and unit commitment [J]. Applied Energy, 2011, 88(11): 40144023. |
[14]
|
Aghaei J, Niknam T, Azizipanah Abarghooee R, et al. Scenario based dynamic economic emission dispatch considering load and wind power uncertainties [J]. International Journal of Electrical Power & Energy Systems, May, 2013, 47: 351367. |
[15]
|
Kanungo T, Mount D M, Netanyahu N S, et al. An efficient K means clustering algorithm: analysis and implementation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24: 881892. |
[16]
|
Wagstaff K, Cardie C,Rogers S, et al. Constrained K means clustering with background knowledge [C]. Proceedings of the 18th International Conference on Machine Learning, 2001: 577584. |
[17]
|
周世兵,徐振源,唐旭清. K means 算法最佳聚类数确定方法[J].计算机应用, 2010, 30(8): 19951998. |
[18]
|
Tipping M E. Sparse Bayesian Learning and the Relevance Vector Machine[J]. Journal of Machine Learning Research, 2001(1):211244. |
[19]
|
Yan J, Liu Y Q, Han S, et al. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine [J]. Renewable & Sustainable Energy Reviews, 2013, 27: 613621. |
[20]
|
Shuafiu A, Anaya Lara O, Bathurst G. Aggregated wind turbine models for power system dynamic studies [J]. Wind Engineering, 2006, 30(3):171185. |
[21]
|
Pinson P, Nielsen Haa, M ller J K, et al. Nonparametric probabilistic forecasts of wind power: required properties and evaluation [J]. Wind Energy, 2007, 10: 497516. |