留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

风电功率预测技术研究综述

黎静华 桑川川 甘一夫 潘毅

黎静华, 桑川川, 甘一夫, 潘毅. 风电功率预测技术研究综述[J]. 现代电力, 2017, 34(3): 1-11.
引用本文: 黎静华, 桑川川, 甘一夫, 潘毅. 风电功率预测技术研究综述[J]. 现代电力, 2017, 34(3): 1-11.
LI Jinghua, SANG Chuanchuan, GAN Yifu, PAN Yi. A Review of Researches on Wind Power Forecasting Technology[J]. Modern Electric Power, 2017, 34(3): 1-11.
Citation: LI Jinghua, SANG Chuanchuan, GAN Yifu, PAN Yi. A Review of Researches on Wind Power Forecasting Technology[J]. Modern Electric Power, 2017, 34(3): 1-11.

风电功率预测技术研究综述

基金项目: 国家自然科学基金项目(51377027);国家电网公司科技项目(DZ71-14-001)
详细信息
    作者简介:

    黎静华 (1982—),女,教授,博士生导师,研究方向为电力系统优化运行与控制,大规模风电并网运行等,E-mail:happyjinghua@163.com;
    桑川川 (1989—),男,硕士研究生,研究方向为负荷预测,风电功率预测,E-mail:sound1409@126.com;
    甘一夫 (1992—),男,硕士研究生,研究方向为风电功率预测,E-mail:zhuanyeyiliu@126.com;
    潘 毅 (1968—),女,博士,主要从事系统运行调度等方面的研究工作,E-mail:pany@epri.sgcc.com.cn。

  • 中图分类号: TM614

A Review of Researches on Wind Power Forecasting Technology

  • 摘要: 为了更好地开展风电功率预测的应用研究工作,以点预测、区间预测、概率预测以及场景预测为主线,对现有的风电功率预测技术进行了归纳、总结和梳理。首先,分析了风电功率预测的难点,按照不同的时空尺度、预测形式、预测对象以及预测模型对风电功率预测进行了分类;基于不同的分类,分别阐述了当前风电功率预测的模型、理论及方法;然后,分析了国内外主要的风电功率预测软件和系统,并总结了风电功率预测误差的评判标准和指标;最后,探讨未来风电功率预测的发展趋势。本文的研究工作,可为风电功率预测研究以及风电功率预测系统的开发应用,提供较为全面的参考信息。
  • [1] 王勃,冯双磊,刘纯.考虑预报风速与功率曲线因素的风电功率预测不确定性估计[J].电网技术,2014,38(2):463468.[2] 常康,丁茂生,薛峰,等.超短期风电功率预测及其在安全稳定预警系统中的应用[J]. 电力系统保护与控制,2012,40(12):1924,30.[3] 任磊.风力发电对电力系统稳定控制的影响研究[D] .武汉:华中科技大学,2011.[4] 迟永宁,刘燕华,王伟胜,等.风电接入对电力系统的影响[J].电网技术,2007,31(3):7781.[5] 中国能源网:http://www.china5e.com/news/news-911 7731.html[6] 中国能源网:http://www.china5e.com/news/news-911 7401.html[7] 王健,严干贵,宋薇,等.风电功率预测技术综述[J].东北电力大学学报,2011,31(3):2024.[8] 王丽婕,廖晓钟,高阳,等.风电场发电功率的建模和预测研究综述[J].电力系统保护与控制,2013,37(23):118121.[9] 谷兴凯,范高锋,王晓蓉,等.风电功率预测技术综述[J].电网技术,2007,31(2):335338.[10]郑婷婷,王海霞,李卫东.风电预测技术及其性能评价综述[J].南方电网技术,2013(2):104109.[11]叶林,赵永宁.基于空间相关性的风电功率预测研究综述[J].电力系统自动化,2014,38(14):126135.[12]薛禹胜,雷兴,薛峰,等.关于风电不确定性对电力系统影响的评述[J].中国电机工程学报,2014,34(29):50295040.[13]William P. Mahoney,Keith Parks,Gerry Wiener,et al.A Wind Power Forecasting System to Optimize Grid Integration[J].IEEE Transactions on Sustainable Energy,2012,3(4):670682.[14]严干贵,刘嘉,崔杨,等.利用储能提高风电调度入网规模的经济性评价[J].中国电机工程学报,2013,33(22):4552.[15]Muhammad Khalid,Andrey V. Savkin.A Method for Short-Term Wind Power Prediction With Multiple Observation Points[J].IEEE Transactions on Power Systems,2012,27(2):579586.[16]Xie Le,Gu Yingzhong,Zhu Xinxin,et al. Short-Term Spatio-Temporal Wind Power Forecast in Robust Look-ahead Power System Dispatch[J].IEEE Transactions on Smart Grid,2014,5(1):511520. [17]孟安波,陈育成.基于虚拟预测与小波包变换的风电功率组合预测[J].电力系统保护与控制,2014,42(3):7176.[18]马斌,张丽艳.一种基于径向基神经网络的短期风电功率直接预测方法[J].电力系统保护与控制,2015,43(19):7882.[19]刘兴杰,谢春雨.基于贝塔分布的风电功率波动区间估计[J].电力自动化设备,2014,34(12):2630+57.[20]李智,韩学山,杨明,等.基于分位点回归的风电功率波动区间分析[J].电力系统自动化,2011,35(3):8387.[21]朱思萌,杨明,韩学山,等.多风电场短期输出功率的联合概率密度预测方法[J].电力系统自动化,2014,38(19):815.[22]周封,金丽斯,刘健,等.基于多状态空间混合Markov链的风电功率概率预测[J].电力系统自动化,2012,36(6):2933,84.[23]黎静华,孙海顺,文劲宇,等.生成风电功率时间序列场景的双向优化技术[J].中国电机工程学报,2014,34(16):25442551.[24]黎静华,文劲宇,程时杰,等.考虑多风电场出力 Copula 相关关系的场景生成方法[J].中国电机工程学报,2013,33(16):3037.[25]丁华杰,宋永华,胡泽春,等.基于风电场功率特性的日前风电预测误差概率分布研究[J].中国电机工程学报,2013,33 (34):136144.[26]季峰,蔡兴国,王俊.基于混合 Copula 函数的风电功率相关性分析[J].电力系统自动化,2014,38(2):16.[27]Zhang Geng,Li HanXiong,Gan Min. Design a Wind Speed Prediction Model Using Probabilistic Fuzzy System[J].IEEE Transactions on Industrial Informatics,2012,8(4): 819827.[28]林鹏,赵书强,谢宇琪,等.基于实测数据的风电功率曲线建模及不确定估计[J].电力自动化设备,2015,35(4):9095.[29]阎洁,刘永前,韩爽,等.考虑流动相关性的风电场机组分组功率预测方法[J].现代电力,2015,32(1):2530.[30]陈颖,孙荣富,吴志坚,等.基于统计升尺度方法的区域风电场群功率预测[J].电力系统自动化,2013,37(7):15.[31]张国强,张伯明.基于组合预测的风电场风速及风电机功率预测[J].电力系统自动化,2009,33(18):9296.[32]冯双磊,王伟胜,刘纯,等.风电场功率预测物理方法研究[J].中国电机工程学报,2010,30(2):16.[33]王恺,关少卿,汪令祥,等.基于模糊信息粒化和最小二乘支持向量机的风电功率联合预测建模[J].电力系统保护与控制,2015,43(2):2632.[34]李智,韩学山,韩力,等.地区电网风电场功率超短期预测方法[J].电力系统自动化,2010,34(7):9094.[35]茆美琴,曹雨,周松林,等.基于误差叠加修正的改进短期风电功率预测方法[J].电力系统自动化,2009,37(13):3438.[36]Aoife M Foley,Paul G Leahy,Antonino Marvuglia,et al.Current methods and advances in forecasting of wind power generation[J].Renewable Energy,2012,37:18.[37]王勃,冯双磊,刘纯.考虑预报风速与功率曲线因素的风电功率预测不确定性估计[J].电网技术,2014,38(2):463468.[38] Shi Jie, Ding Zhaohao,Lee Wei-Jen,et al. Hybrid Forecasting Model for Very-Short Term Wind Power Forecasting Based on Grey Relational Analysis and Wind Speed Distribution Features[J].IEEE Transactions on Smart Grid,2014,5(1):521526.[39]王丽婕,冬雷,高爽.基于多位置NWP与主成分分析的风电功率短期预测[J].电工技术学报,2015,30(5):7984.[40]李莉,刘永前,杨勇平,等.基于CFD流场预计算的短期风速预测方法[J].中国电机工程学报,2013,33(7):2733.[41]韩爽.风电场功率短期预测方法研究[D].北京:华北电力大学,2008.[42]张建华,王昕伟,蒋程,等.基于蒙特卡罗方法的风电场有功出力的概率性评估[J].电力系统保护与控制,2014,42(3):8287.[43]丁明,张立军,吴义纯,等.基于时间序列分析的风电场风速预测模型[J].电力自动化设备,2005,25(8):3234.[44]Chen Hao, Wan Qiulan,Li Fangxing,et al. GARCH in Mean Type Models for Wind Power Forecasting [C].Power and Energy Society General Meeting,2013.[45]DVTTA S,OVERBYE T J.Prediction of short term power output of wind farms based on least squares method[C].Power and Energy Society General Meeting,2010.[46]王贺,胡志坚,仉梦林.基于模糊信息粒化和最小二乘支持向量机的风电功率波动范围组合预测模型[J].电工技术学报,2014,29(12):218224.[47]Kusiak Andrew,Li Wenyan. Short-term prediction of wind power with a clustering approach [J].Renewable Energy,2010,35:23622369.[48]王勃,冯双磊,刘纯.基于天气分型的风电功率预测方法[J].电网技术,2014,38(1):9398.[49]LOUKA P,GALANIS G,KATSAFADOS G K,et al.Improvements in wind speed forecasts for wind power prediction purposes using kalman filtering[C].In Proc.of the 5th Conference on Mathematical Models in Science and Engineering,2005.[50]潘迪夫,刘辉,李燕飞.风电场风速短期多步预测改进算法[J].中国电机工程学报,2008,28(26):8791.[51]方江晓,周晖,黄梅,等.基于统计聚类分析的短期风电功率预测[J].电力系统保护与控制,2011,39(11):6764.[52]江岳文,温步瀛.结合风电功率超短期预测值偏差的实时市场调度[J].电力自动化设备,2015,35(3):1217.[53]WU Yuankang,HONG Jingshan.A literature review of wind forecasting technology in the world[C].Power Tech,2007 IEEE Lausanne.[54]Zeng Jianwu,Qiao Wei. Short-Term Wind Power Prediction Using a Wavelet Support Vector Machine[J].IEEE Transactions on Sustainable Energy,2012,3(2):255264.[55]Hanieh Borhan Azad,Saad Mekhilef,Vellapa Gounder Ganapathy.Long-Term Wind Speed Forecasting and General Pattern Recognition Using Neural Networks[J].IEEE Transactions on Sustainable Energy, 2014,5(2):546553.[56]Lee Duehee,Baldick Ross. Short-Term Wind Power Ensemble Prediction Based on Gaussian Processes and Neural Networks[J].IEEE Transactions on Smart Grid,2014,5(1):501510.[57]CAMERON W P,NEGNEVITSKY P.Very short-term wind forecasting for tasmanian power generation[J].IEEE Transactions on Power Systems,2006,21(2):965972.[58]孔波利,崔丽艳,丁钊,等.基于风光混合模型的短期功率预测方法研究[J].电力系统保护与控制,2015,43(18):6266.[59]Rajananda Kishore G,Prema V,Dr.K. Uma Rao.Multivariate Wind Power Forecast using Artificial Neural Network [C].IEEE Global Humanitarian Technology Conference-SAS,2014.[60]George Sideratos,Nikos D. Hatziargyriou.Probabilistic Wind Power Forecasting Using Radial Basis Function Neural Networks [J].IEEE Transactions on Power Systems,2012,27(4):17881796.[61]DAMOUSIS I G,DOKOPOULOS.A fuzzy expert system for the forecasting of wind speed and power generation in wind farms[C].The 22nd IEEE Power Engineering Society International Conference on Power Industry Computer Applications,2001.[62]陈道君,龚庆武,金朝意,等.基于自适应扰动量子粒子群算法参数优化的支持向量回归机短期风电功率预测[J].电网技术,2013,37(4):974980.[63]BATES J M,GRANGER C W J.The combination of forecasts[J].Operational Research Quarterly,1969,20(4):451468.[64]李玲玲,许亚惠,田晓越,等.基于组合模型的风电功率短期预测[J].电工技术学报,2014,29(S1):475480.[65]叶林,刘鹏.基于经验模态分解和支持向量机的短期风电功率组合预测模型[J].中国电机工程学报,2011,31(31):102108.[66]Ren Ye,Suganthan P N,Srikanth Narasimalu. A Comparative Study of Empirical Mode Decomposition-Based Short-Term Wind Speed Forecasting Methods [J].IEEE Transactions on Sustainable Energy,2015,6(1):236244.[67]张学清,梁军,张熙,等.基于样本熵和极端学习机的超短期风电功率组合预测模型[J].中国电机工程学报,2013,33(25):3340.[68]王焱,汪震,黄民翔,等.基于OS-ELM和BOOTSTRAP方法的超短期风电功率预测[J].电力系统自动化,2014,38(6):1420.[69]刘爱国,薛云涛,胡江鹭,等.基于GA优化SVM的风电功率的超短期预测[J].电力系统保护与控制,2015,43(2):9095.[70]杨茂,齐玥,穆钢,等.基于改进熵权法的风电功率组合预测方法[J].电测与仪表,2015,52(15):4650.[71]Abbas K,Saeid N and Doug C. Prediction intervals for short-time wind farm power generation forecasts [J].IEEE Transitions on Sustainable Energy,2013,4(3):602610.[72]Can W,Zhao X,Pierre P,et al. Optimal prediction intervals of wind power generation [J].IEEE Transitions on Power Systems,2014,29 (3):11661174.[73]Hao Q, Dipti S,and Abbas K.Short-time load and wind power forecasting using neural network-based prediction intervals[J].IEEE Transactions on Neural Networks and Learning Systems,2014,25 (2):303315.[74]Abdollah K F,Abbas K,and Saeid N.A novel fuzzy multi-objective framework to construct optimal prediction intervals for wind power forecast [C].2014 International Joint Conference on Neural Network (IJCNN),July 611,2014,Beijing,China.[75]Pierre P,George K.Conditional prediction intervals of wind power generation [J].IEEE Transactions on Power Systems,2010,25(4):18451856.[76]李智,韩学山,杨明,等.基于分位点回归的风电功率波动区间分析[J].电力系统自动化,2011,35(3): 8387.[77]刘兴杰,谢春雨.基于贝塔分布的风电功率波动区间估计[J].电力系统自动化,2014,34(12):2630,57.[78]Zhang Yao,Wang Jianxue,Wang Xifan. Review on probabilistic forecasting of wind power generation [J].Renewable and Sustainable Energy Reviews,2014,32:255270.[79]杨明,范澍,韩学山,等.基于分量稀疏贝叶斯学习的风电场输出功率概率预测方法[J].电力系统自动化,2012,36(14):125130,142.[80]He Miao,Yang Lei,Yang Junshan,et al.A Spatio-Temporal Analysis Approach for Short-Term Forecast of Wind Farm Generation[J].IEEE Transactions on Power Systems,2014,29(4):16111622.[81]林卫星,文劲宇,艾小猛,等.风电功率波动特性的概率分布研究[J].中国电机工程学报, 2012,32(1): 3846.[82]王彩霞,鲁宗相,乔颖,等.基于非参数回归模型的短期风电功率预测[J].电力系统自动化,2010,34(16):7882,91.[83]Hu Qinghua,Su Pengyu,Yu Daren,et al. Pattern-Based Wind Speed Prediction Based on Generalized Principal Component Analysis[J].IEEE Transactions on Sustainable Energy,2014,5(3):866874.[84]Li JingHua,Wen JinYu,Cheng ShiJie, et al.Minimum energy storage for power system with high wind power penetration using p-efficient point theory[J].Science China Information Sciences,2014,57(12):112.[85]Ricardo J. Bessa,Vladimiro Miranda,Audun Botterud,et al.Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting [J].IEEE Transactions on Sustainable Energy,2012,3(4):660669.[86]Ashraf Ul Haque,M. Hashem Nehrir,ParasMandal.A Hybrid Intelligent Model for Deterministic and Quantile Regression Approach for Probabilistic Wind Power Forecasting [J].IEEE Transactions on Sustainable Energy,2014,29(4):16631672.[87]Wan Can,Xu Zhao,Pinson Pierre,et al. Probabilistic Forecasting of Wind Power Generation Using Extreme Learning Machine [J].IEEE Transactions on Sustainable Energy,2014,29(3):10331044.[88]黎静华,韦化,莫东.含风电场最优潮流的Wait-and-See模型与最优渐近场景分析[J].中国电机工程学报,2012,32(22):1523.[89]徐秋实,邓长虹,赵维兴,等.含风电电力系统的多场景鲁棒调度方法[J].电网技术,2014,38(3):653661.[90]Li Jinghua,Fang Jiakun,Wen Jinyu,et al. Optimal trade-off between regulation and wind curtailment in the economic dispatch problem[J].CSEE Journal of Power and Energy Systems.2015,1(4):3745.[91]高红均,刘俊勇,刘继春,等.基于坏场景集的含风电机组组合模型[J].电力系统保护与控制,2013,41(10):2732.[92]张晓辉,闫柯柯,卢志刚,等.基于场景概率的含风电系统多目标低碳经济调度[J].电网技术,2014,38(7):18351841.[93]Pinson P,Madsen H,Nielsen H A,et al.From probabilistic forecasts to statistical scenarios of short-term wind power production[J].Wind Energy,2009(12):5162.[94]Sumalili J,Keko H,Miranda V,et al.Clustering-based wind power scenario reduction technique[C].The 17th Power Systems Computation Conference 2011(PSCC 2011 Stockholm).Stockholm,Sweden:Curran Associates,2011:391398.[95]Growe-Kuska N,Heitsch H,Romisch W.Scenario reduction and scenario tree construction for power management problems[C].Power Tech Conference Proceedings,Bologna,Italy:IEEE Bologna,2003:713.[96]Pappala V S,Erlich I,Rohrig K,et al.A stochastic model for the optimal operation of a wind-thermal power system[J].IEEE Transactions on Power Systems,2009, 24(2):940950.[97]Sharma K C,Jain P,Bhakar R.Wind power scenario generation and reduction in stochastic programming framework[J]. Electric Power Components and Systems,2013,41(3):271285.[98]MARTP I. Wind forecasting activities[C] .The First IEA Joint Action Symposium on Wind Forecasting Techniques,December,2002,Norrkoping,Sweden.[99]袁铁江,晁勤,李义岩,等.大规模风电并网电力系统经济调度中风电场出力的短期预测模型[J].中国电机工程学报,2010,30(13):2327.[100]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化,2011,35(12):2026.[101]中国电力科学研究院.GB/T 19963—2011 风电场接入电力系统技术规定[S].北京:中国标准出版社,2012.[102]郁琛,薛禹胜,文福拴,等.风电功率预测误差的风险评估[J].电力系统自动化,2015,39(7):5258.[103]刘燕华,李伟花,刘冲,等.短期风电功率预测误差的混合偏态分布模型[J].中国电机工程学报,2015,35(10):23752382.
  • [1] 赵会茹, 张士营, 赵一航, 刘红雨, 邱宝红.  基于自适应噪声完备经验模态分解−样本熵−长短期记忆神经网络和核密度估计的短期电力负荷区间预测 . 现代电力, 2021, 38(2): 138-146. doi: 10.19725/j.cnki.1007-2322.2020.0329
    [2] 李春平, 张沛, 彭春华, 尹瑞, 时珉.  基于随差遗忘长短期记忆的风电功率实时预测 . 现代电力, 2021, 38(1): 110-118. doi: 10.19725/j.cnki.1007-2322.2020.0200
    [3] 李雯, 魏斌, 韩肖清, 郭玲娟.  基于DPK-means和ELM的日前光伏发电功率预测 . 现代电力, 2020, 37(4): 351-357. doi: 10.19725/j.cnki.1007-2322.2019.0929
    [4] 李正明, 高赵亮, 梁彩霞.  基于FCM和CG-DBN的光伏功率短期预测 . 现代电力, 2019, 36(5): 62-67.
    [5] 赵琦玮, 王昕, 王鑫, 郎永波, 贾立凯.  微电网环境下考虑日前预测误差的电动汽车多时间尺度优化调度模型 . 现代电力, 2019, 36(5): 47-53.
    [6] 刘卫东, 余德钊, 裘华东, 胡若云, 刘周斌, 张利军, 徐晨博, 丁一.  售电侧市场化改革分析与预测指标体系 . 现代电力, 2019, 36(1): 22-28.
    [7] 屠亚南, 于艾清.  基于平抛模型的光伏多峰最大功率点预测跟踪方法 . 现代电力, 2019, 36(3): 27-33.
    [8] 蔡佳铭, 王承民, 谢 宁, 彭 石.  基于能量函数模型的风电功率在线预测方法研究 . 现代电力, 2018, 35(2): 71-79.
    [9] 史光耀, 邱晓燕, 赵劲帅, 马菁曼.  计及风电功率预测误差与需求响应的电力系统滚动调度 . 现代电力, 2018, 35(6): 9-15.
    [10] 高小力, 张智博, 田启明, 刘永前.  基于HS-Clustering的风电场机组分组功率预测 . 现代电力, 2017, 34(3): 12-18.
    [11] 徐敏姣, 徐青山, 袁晓冬.  基于改进EMD及Elman算法的短期光伏功率预测研究 . 现代电力, 2016, 33(3): 8-13.
    [12] 甘 迪, 柯德平, 孙元章, 崔明建.  基于突变理论的风电爬坡多步预测 . 现代电力, 2016, 33(3): 14-21.
    [13] 杨家然, 王兴成, 蒋 程, 罗晓芬.  一种新型确定性风电功率预测模型及其概率性评估 . 现代电力, 2016, 33(5): 80-86.
    [14] 阎 洁, 刘永前, 张 浩, 张慧玲, 冯双磊.  基于风场景识别的动态风电功率概率预测方法 . 现代电力, 2016, 33(2): 51-58.
    [15] 张慧玲, 高小力, 刘永前, 阎洁, 韩爽.  三种主流风电场功率预测算法适应性对比研究 . 现代电力, 2015, 32(6): 7-13.
    [16] 阎洁, 刘永前, 韩爽, 王一妹, 张晋华, 朱戎.  考虑流动相关性的风电场机组分组功率预测方法 . 现代电力, 2015, 32(1): 25-30.
    [17] 刘永前, 王一妹, 韩爽, 李莉.  基于CFD流场预计算的风电功率预测误差分布研究 . 现代电力, 2014, 31(5): 64-69.
    [18] 崔 勇, 王 川, 陈小龙, 范名贵.  基于灰色马尔科夫预测模型的中长期电力负荷预测 . 现代电力, 2011, 28(3): 38-41.
    [19] 刘永前, 朴金姬, 韩 爽.  风电场输出功率预测中两种神经网络算法的研究 . 现代电力, 2011, 28(2): 49-52.
    [20] 牛彦涛, 王 辉.  结合误差校正的北京市中长期电力需求预测 . 现代电力, 2011, 28(1): 90-94.
  • 加载中
计量
  • 文章访问数:  809
  • HTML全文浏览量:  17
  • PDF下载量:  782
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-19
  • 修回日期:  2017-06-26
  • 刊出日期:  2017-06-09

风电功率预测技术研究综述

    基金项目:  国家自然科学基金项目(51377027);国家电网公司科技项目(DZ71-14-001)
    作者简介:

    黎静华 (1982—),女,教授,博士生导师,研究方向为电力系统优化运行与控制,大规模风电并网运行等,E-mail:happyjinghua@163.com;
    桑川川 (1989—),男,硕士研究生,研究方向为负荷预测,风电功率预测,E-mail:sound1409@126.com;
    甘一夫 (1992—),男,硕士研究生,研究方向为风电功率预测,E-mail:zhuanyeyiliu@126.com;
    潘 毅 (1968—),女,博士,主要从事系统运行调度等方面的研究工作,E-mail:pany@epri.sgcc.com.cn。

  • 中图分类号: TM614

摘要: 为了更好地开展风电功率预测的应用研究工作,以点预测、区间预测、概率预测以及场景预测为主线,对现有的风电功率预测技术进行了归纳、总结和梳理。首先,分析了风电功率预测的难点,按照不同的时空尺度、预测形式、预测对象以及预测模型对风电功率预测进行了分类;基于不同的分类,分别阐述了当前风电功率预测的模型、理论及方法;然后,分析了国内外主要的风电功率预测软件和系统,并总结了风电功率预测误差的评判标准和指标;最后,探讨未来风电功率预测的发展趋势。本文的研究工作,可为风电功率预测研究以及风电功率预测系统的开发应用,提供较为全面的参考信息。

English Abstract

黎静华, 桑川川, 甘一夫, 潘毅. 风电功率预测技术研究综述[J]. 现代电力, 2017, 34(3): 1-11.
引用本文: 黎静华, 桑川川, 甘一夫, 潘毅. 风电功率预测技术研究综述[J]. 现代电力, 2017, 34(3): 1-11.
LI Jinghua, SANG Chuanchuan, GAN Yifu, PAN Yi. A Review of Researches on Wind Power Forecasting Technology[J]. Modern Electric Power, 2017, 34(3): 1-11.
Citation: LI Jinghua, SANG Chuanchuan, GAN Yifu, PAN Yi. A Review of Researches on Wind Power Forecasting Technology[J]. Modern Electric Power, 2017, 34(3): 1-11.
参考文献 (1)

目录

    /

    返回文章
    返回